018、Python+fastapi,第一个Python项目走向第18步:ubuntu24.04 安装cuda和pytorch环境

一、说明

我们安装了pytorch环境之后,会用yolo v9 来测试一下,看8g 显存能不能跑下来,上次用无影云电脑,4cpu+8g内存直接爆了,云电脑也死机了,提示一直占用内存不释放,我自己的云电脑不能占用内存,所以很黑啊,这云电脑和我们自己装的虚拟机差不多,几个虚拟机不是实给的资源,是共用的吧,我用了8g满了,而且不释放,这样不行啊,直接让你死机了,废话少说,Anaconda3我们前面文章里装过了,

二、安装Anaconda3

008、Python+fastapi,第一个后台管理项目走向第8步:ubutun 20.04下安装vscode+python环境配置-CSDN博客

wget 下载

wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

bash Anaconda3-2024.02-1-Linux-x86_64.sh
#为了能让系统找到conda程序
source ~/.bashrc

(base) victor@victor:~/tools$ conda -V
conda 24.1.2
这表示安装成功了

三、安装虚拟环境

1、配置清华源

以前我们用新的python都会出问题,这次我们用python12看看行不行

conda config --remove-key channels

#添加镜像源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/pkgs/free/
conda config --ad

<think>好的,我现在需要帮助用户在Ubuntu 24.04系统上配置CUDA 12.4、cuDNN 8.9,并通过Python 3.12.9安装PyTorch。首先,我需要回忆相关的安装骤,并参考提供的引用内容来确保正确性。 首先,用户已经安装了NVIDIA驱动,但根据引用[2],可能需要确认驱动版本是否兼容CUDA 12.4。通常CUDA 12.4需要至少535版本的驱动,所以可能需要用户先检查驱动版本,如果需要的话升级或安装合适的驱动。 接下来是安装CUDA 12.4。引用[2]提到安装CUDA的过程,但具体到12.4版本,可能需要从NVIDIA官网下载对应的安装包。用户需要使用wget下载CUDA的本地仓库安装包,然后使用dpkg安装,并复制密钥环文件到指定位置,最后通过apt安装。但这里需要确认CUDA 12.4的安装包名称是否正确,比如检查官网提供的下载链接是否匹配。例如,引用[1]中cuDNN的安装使用了类似的流程,可能CUDA安装骤类似,但需要对应的版本号。 然后是cuDNN 8.9的安装。引用[1]详细说明了如何安装cuDNN,包括下载deb包、安装、复制密钥、更新源并安装。这里需要注意cuDNN版本与CUDA版本的兼容性。用户提到的是cuDNN 8.9,但通常CUDA 12.x可能需要更高版本的cuDNN,比如8.9是否支持CUDA 12.4?可能需要检查NVIDIA的官方文档,但用户可能已经确认过兼容性,所以按照安装即可。 接下来是Python 3.12.9的环境配置。用户可能使用Anaconda或venv来管理环境。引用[2]提到了Anaconda的安装,所以建议用户创建conda环境并指定Python版本。例如,使用conda create命令,并激活环境安装PyTorch时,需要找到支持CUDA 12.4Python 3.12.9的版本。根据引用[3],PyTorch安装命令可能需要调整版本号。例如,用户提供的示例命令是CUDA 12.1的,所以需要改为CUDA 12.4对应的版本。但PyTorch官方可能尚未提供针对CUDA 12.4的预编译版本,可能需要检查PyTorch官网的兼容性表格。如果CUDA 12.4不被直接支持,可能需要使用CUDA 12.1的PyTorch版本,但需要确认是否兼容。或者,用户可能需要从源码编译PyTorch,但这比较复杂。 此外,用户可能需要安装nvidia-cuda-toolkit,如引用[4]提到的,以确保必要的工具链可用。 测试阶段,需要验证CUDAcuDNN是否正确安装,以及PyTorch是否能识别GPU。可以通过运行Python脚本检查torch.cuda.is_available(),并测试基本张量运算。 最后,用户可能需要处理兼容性问题,比如Python 3.12.9是否被PyTorch官方支持。如果PyTorch尚未发布对应Python 3.12的版本,可能需要使用较旧的Python版本,或者通过conda-forge等渠道安装。这可能是一个潜在的问题,需要提醒用户注意。 总结骤:安装驱动→安装CUDA安装cuDNN→配置Python环境安装PyTorch→验证安装。需要确保每一的版本兼容性,并参考官方文档进行调整。</think>### 分配置指南 #### 1. 验证 NVIDIA 驱动兼容性 CUDA 12.4 需要 **NVIDIA 驱动版本 ≥ 535.113.01**,执行以下命令验证: ```bash nvidia-smi ``` 若未安装驱动,使用以下命令安装(以535版本为例): ```bash sudo apt install nvidia-driver-535 ``` 重启后再次验证驱动状态[^2]。 --- #### 2. 安装 CUDA 12.4 **骤1**: 添加 CUDA 仓库 ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-ubuntu2404.pin sudo mv cuda-ubuntu2404.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/3bf863cc.pub sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/ /" ``` **骤2**: 安装 CUDA 12.4 ```bash sudo apt update sudo apt install cuda-12-4 ``` **骤3**: 配置环境变量 ```bash echo 'export PATH=/usr/local/cuda-12.4/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.4/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` 验证安装: ```bash nvcc --version # 应显示 CUDA 12.4 ``` --- #### 3. 安装 cuDNN 8.9 **骤1**: 下载 cuDNN 8.9 的本地仓库包(需官网登录) ```bash wget https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz ``` **骤2**: 解压并安装 ```bash tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include/ sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 验证安装: ```bash /sbin/ldconfig -N -v $(sed 's/://' <<< $LD_LIBRARY_PATH) | grep libcudnn # 应显示版本号 ``` --- #### 4. 配置 Python 3.12.9 环境 **建议使用 Miniconda 管理环境**: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh ``` 创建独立环境: ```bash conda create -n pytorch_env python=3.12.9 conda activate pytorch_env ``` --- #### 5. 安装 PyTorch 目前 PyTorch 官方未提供 CUDA 12.4 的预编译包,需使用 **CUDA 12.1 兼容版本**(向下兼容): ```bash pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu121 ``` *注:实际使用时 CUDA 12.4 会以兼容模式运行[^3]。* --- #### 6. 验证深度学习环境 创建测试脚本 `pytorch_test.py`: ```python import torch print(f"PyTorch版本: {torch.__version__}") print(f"CUDA可用: {torch.cuda.is_available()}") print(f"GPU数量: {torch.cuda.device_count()}") print(f"当前GPU: {torch.cuda.current_device()}") print(f"GPU名称: {torch.cuda.get_device_name(0)}") ``` 运行验证: ```bash python pytorch_test.py # 应显示 CUDA 可用 GPU 信息 ``` --- ### 常见问题解决 - **CUDA/cuDNN 版本不匹配**:检查 `/usr/local/cuda` 软链接指向是否正确。 - **PyTorch 无法识别 GPU**:确认 `LD_LIBRARY_PATH` 包含 CUDA 库路径。 - **Python 版本冲突**:使用 `conda clean --all` 清理缓存后重试。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值