牛客网-连续子数组的最大和

该博客探讨了如何使用动态规划算法解决找到一串整数中连续子数组的最大和的问题。给出了一个O(n)时间复杂度和O(n)空间复杂度的解决方案,并提供了进阶优化到O(n)时间复杂度和O(1)空间复杂度的方法。内容详细解释了算法思路及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛客网-连续子数组的最大和 题目链接

描述
输入一个长度为n的整型数组array,数组中的一个或连续多个整数组成一个子数组,子数组最小长度为1。求所有子数组的和的最大值。
数据范围:
1 <= n <= 2\times10^51<=n<=2×10
5

-100 <= a[i] <= 100−100<=a[i]<=100

要求:时间复杂度为 O(n)O(n),空间复杂度为 O(n)O(n)
进阶:时间复杂度为 O(n)O(n),空间复杂度为 O(1)O(1)

public static int FindGreatestSumOfSubArray(int[] array) {
        if(array.length == 0) {
            return 0;
        }
        // 定义dp用来保存相加后的值
        int[] dp = new int[array.length];
        dp[0] = array[0];
        for (int i = 1; i < array.length; i++) {
            // 当前面相加的值小于当前值的时候 重新从当前值开始相加
            dp[i] = Math.max(dp[i - 1] + array[i], array[i]);
        }
        int max = dp[0];
        // 找出最大的一个
        for (int i = 1; i < dp.length; i++) {
            if(max < dp[i]) {
                max = dp[i];
            }
        }
        return max;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT自习小空间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值