概率分布决定了随机变量采用的所有结果的概率。分布可以是连续分布或离散分布,具体取决于随机变量采用的值。概率分布有几种类型,如正态分布、均匀分布、指数分布等。在本文中,我们将了解正态分布,还将了解如何使用 Python 绘制正态分布。
什么是正态分布
正态分布是一个连续概率分布函数,也称为高斯分布,它的平均值是对称的,并且具有钟形曲线。它是最常用的概率分布之一。它有两个参数
- Mean(μ) - 它表示分布的中心
- Standard Deviation(σ) – 它表示曲线中的分布
正态分布的公式为
正态分布公式
正态分布的性质
- Symmetric distribution (对称分布) – 正态分布相对于其平均值点是对称的。这意味着分布在其平均值上完全平衡,两侧有一半的数据。
- 钟形曲线 – 正态分布的图形采用钟形曲线形式,其中大多数点累积在其平均位置。此曲线的形状由分布的平均值和标准差决定
- 经验法则 – 正态分布曲线遵循经验法则,其中 68% 的数据位于与图表平均值的 1 个标准差范围内,95% 的数据位于与平均值的 2 个标准差之间,99.7% 的数据位于与平均值的 3 个标准差之间。
正态分布中的经验法则
- Additive Rule (加法规则) – 两个或多个正态分布之和将始终为正态分布。
- 中心极限定理 – 它指出,如果我们取从独立和相同的分布式随机变量收集的大型无数据点的平均值,那么这些平均值将遵循正态分布,而不管它们的原始分布如何。
使用 Python 的正态分布
Python 编程语言有几个库,可用于绘制正态分布并获取数据点的概率分布函数。
绘制和应用正态分布所需的模块
- Numpy – 一个用于数值数学计算和处理多维 ndarr