2015:Cocoapods使用说明手册,翻译

本文提供了一篇关于CocoaPods更新命令的深入指南,包括如何忽略已修改的库进行单独更新,以及使用podupdate命令的具体选项来定制更新过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官网说明书:http://guides.cocoapods.org/terminal/commands.html

其实看这个就能解决几个重要问题:

1、第三方已经给修改过,如何忽略掉,更新别的,就是单独更新

原文:http://guides.cocoapods.org/terminal/commands.html#pod_update

翻译:

pod 更新

pod update [POD_NAMES ...]

更新由pod指定的POD_NAMES标识的库。如果POD_NAMES没有指定,则它将更新所有的库,忽略了 Podfile.lock 的内容。此命令保留给依赖项的更新和 pod 安装应该用于对 Podfile 安装更改。

Options:

--project-directory=/project/dir/

设置更新的路径

--no-clean

下载后离开SCM连接管理

--no-integrate

跳过xcode项目的pod集成库

--no-repo-update

安装前跳过pod repo update步骤,repo是git的版本库

Inherited options:

--silent

什么都不显示

--version

显示该工具的版本。

--verbose

显示更多的调试信息。

--no-ansi

显示输出没有 ANSI 代码。

--help

帮助


单独更新的例子:

pod update 'pop' --verbose --no-repo-update  //更新pop库,显示所有调试信息,不检查更新cocoapod版本库

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值