目录
自训练作为一种半监督学习技术,其核心流程是:首先在小规模标注数据集上训练初始模型,随后通过模型自身的预测结果进行迭代优化。在每轮迭代中,模型会筛选出对无标注数据中最可靠的预测结果,将其作为伪标签加入训练集。这种循环过程会持续进行,直至模型性能趋于稳定或无标注数据耗尽。该方法尤其适用于标注成本高昂的场景,能够有效利用大量无标注数据提升模型表现。
自训练步骤
- 1. 在有标签数据上进行训练:从一个在小的有标签数据集上训练的模型开始。
- 2. 生成伪标签:使用训练好的模型为无标签数据预测标签。通过置信度阈值过滤这些预测结果(例如,只接受高概率的预测)。
- 3. 扩充训练数据:将带有伪标签的样本添加到原始的有标签数据集中。
- 4. 迭代优化:在扩充后的数据集上重新训练模型。重复这个过程,直到模型性能收敛或达到预定义的迭代次