【深度学习】半监督学习中的自训练实战(全源码)

目录

自训练步骤

自训练的重要性

自训练在实践中的应用

在Python中实现自训练

步骤1:导入必要的库

 步骤2:生成并拆分数据集

步骤3:初始化并训练模型

步骤4:进行自训练迭代

步骤5:评估模型

完整代码:

与其他半监督学习方法的比较

自训练的应用

自训练的优点

自训练的挑战


        自训练作为一种半监督学习技术,其核心流程是:首先在小规模标注数据集上训练初始模型,随后通过模型自身的预测结果进行迭代优化。在每轮迭代中,模型会筛选出对无标注数据中最可靠的预测结果,将其作为伪标签加入训练集。这种循环过程会持续进行,直至模型性能趋于稳定或无标注数据耗尽。该方法尤其适用于标注成本高昂的场景,能够有效利用大量无标注数据提升模型表现。

自训练步骤

  • 1. 在有标签数据上进行训练:从一个在小的有标签数据集上训练的模型开始。
  • 2. 生成伪标签:使用训练好的模型为无标签数据预测标签。通过置信度阈值过滤这些预测结果(例如,只接受高概率的预测)。
  • 3. 扩充训练数据:将带有伪标签的样本添加到原始的有标签数据集中。
  • 4. 迭代优化:在扩充后的数据集上重新训练模型。重复这个过程,直到模型性能收敛或达到预定义的迭代次
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值