【深度学习】使用Scikit-learn实现随机森林分类(Python源码)

目录

随机森林分类器的工作原理

随机森林分类的优点

在Python中实现随机森林分类

1. 导入所需库

 2. 导入数据集

3. 数据准备

4. 拆分数据集

 5. 特征缩放

 6. 构建随机森林分类器

 7. 模型评估

8. 特征重要性


随机森林是一种集成学习方法,通过组合多个决策树的预测结果来提高准确性和稳定性。这种方法适用于分类和回归任务。在分类场景下,随机森林会构建多棵决策树,每棵树对输入数据进行独立预测,最终通过投票机制选择得票最多的类别作为预测结果。

随机森林分类器的工作原理

  1. 自助抽样:随机选取行(有放回)来训练每棵树。
  2. 随机特征选择:每棵树使用一组随机的特征(并非所有特征)。
  3. 构建决策树:树使用其随机集合中的最佳特征对数据进行划分。划分持续进行,直到满足停止规则(如最大深度)。
  4. 进行预测:每棵树给出自己的预测结果。
  5. 多数投票:最终预测结果是大多数树认同的那个。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值