目录
随机森林是一种集成学习方法,通过组合多个决策树的预测结果来提高准确性和稳定性。这种方法适用于分类和回归任务。在分类场景下,随机森林会构建多棵决策树,每棵树对输入数据进行独立预测,最终通过投票机制选择得票最多的类别作为预测结果。
随机森林分类器的工作原理
- 自助抽样:随机选取行(有放回)来训练每棵树。
- 随机特征选择:每棵树使用一组随机的特征(并非所有特征)。
- 构建决策树:树使用其随机集合中的最佳特征对数据进行划分。划分持续进行,直到满足停止规则(如最大深度)。
- 进行预测:每棵树给出自己的预测结果。
- 多数投票:最终预测结果是大多数树认同的那个。