一、引言
在工程和科学技术的发展过程中,自动控制担负着重要的角色。除了在宇宙飞船系统、导弹制导系统、机器人系统等领域中,自动控制具有特别重要的作用外,它已成为现代机器制造业和工业生产过程中的重要而不可缺少的组成部分。例如,在制造业的数控机床控制中,在航空和航天工业的自动驾驶仪系统设计中,以及在汽车工业的小汽车和大卡车设计中,自动控制都是必不可少的,此外,在工业中的过程控制,对压力、温度、适度、粘性和流量的控制等工业操作过程,自动控制也是不可缺少的。
自动控制理论和实践不断发展,为人们提供了获得动态系统最佳性能的方法,提高了生产率,并且使人们从繁重的体力劳动和大量重复性的手工操作中解放出来。因此,大多数技术人员和科学工作者现在都必须具备一定的自动控制知识。
二、自动控制理论的发展概述
1.经典控制理论(19世纪初-20世纪250年代)
18世纪,自瓦特改良蒸汽机,控制理论开始初步发展,到了20世纪50年代,频率响应法和根轨迹法被提出并完善。可以说经典控制理论是自动控制理论中发展最为成熟的部分,其中频率响应法和根轨迹法是经典控制理论的核心。
时域法:构造系统的微分方程组并求解,处理较为复杂的系统相当困难,几十上百个微分方程很难找出其通解。
复域法(根轨迹法):根据系统的微分方程,以拉氏变换为数学工具,直接解出控制系统的时间响应;然后根据响应的表达式及其描述曲线来分析系统的控制性能(稳定性、快速性、稳定精度等)。
频域法:频域分析法是研究控制系统的一种工程方法。控制系统中的信号可以表示为不同频率的正弦信号的合成。描述控制系统在不同频率的正弦函数作用时的稳态输出和输入信号之间关系的数学模型称为频率特性,它反映了正弦信号作用下系统响应的性能。应用频率特性研究线性系统的经典方法称为频域分析法。
2.现代控制理论(20世纪60年代-)
经典控制理论只涉及单输入、单输出系统,对于多输入、多输出系统就无能为力了。大约从1960年开始,数字计算机的出现为复杂系统的时域分析提供了可能性。因此,利用状态变量、基于时域分析的现代控制理论应运而生,从而适应了了现代设备日益增加的复杂性,同时也满足了军事、空间技术和工业应用领域对精确度、重量和成本方面的严格要求。
线性系统:解决多输入、多输出系统的一般理论。线性系统是指同时满足叠加性与均匀性(又称为齐次性)的系统。所谓叠加性是指当几个输入信号共同作用于系统时,总的输出等于每个输入单独作用时产生的输出之和;均匀性是指当输入信号增大若干倍时,输出也相应增大同样的倍数。对于线性连续控制系统,可以用线性的微分方程来表示。不满足叠加性和均匀性的系统即为非线性系统。由于线性系统较容易处理