应用场景:美国联邦贸易委员会(FTC)定期设计统计调查,用以检验制造商的说明。例如:大号听装Hilltop咖啡的标签上标明装有3磅咖啡,FTC知道
HillTop的生产线不可能精确的在每罐中放入3磅咖啡,甚至无法保证所有听装咖啡重量的总体均值为3磅/听。当然,只要听装总体重量的均值至少为3磅/听
消费者的权益将得到保障
假设检验-p临界值法:
第一步,为检验提供原假设和备择假设:如果罐内装入咖啡重量的总体均值至少为3磅/听,那么Hilltop遵守了产品的承诺。
原假设:H: u >= 3 备择假设:H: u < 3 我们设定:使得当u = 3,犯第一类错误的概率为0.1
import numpy as np
import scipy.stats
def DataBox():
n = 10000
root_means = np.random.randint(low=29.28, high=32.21, size=n)
# 生成50组咖啡,每组500瓶,50组的数据组成为咖啡的总体,服从正态分布,且均值在 29 ~ 33 之间的数值
coffe_all = list([]) # 生成的咖啡总体,数据服从正态分布
for i in range(n):
group_coffe = np.random.normal(root_means[i], 0.1, 3)
group_coffe = group_coffe.tolist()
coff