假设检验---p临界值法

本文深入探讨了假设检验中的p值临界值法,详细解释了如何设置显著性水平,并通过实例说明如何判断统计结果的显著性。通过对数据挖掘与分析的视角,阐述了该方法在实际问题解决中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应用场景:美国联邦贸易委员会(FTC)定期设计统计调查,用以检验制造商的说明。例如:大号听装Hilltop咖啡的标签上标明装有3磅咖啡,FTC知道
HillTop的生产线不可能精确的在每罐中放入3磅咖啡,甚至无法保证所有听装咖啡重量的总体均值为3磅/听。当然,只要听装总体重量的均值至少为3磅/听
消费者的权益将得到保障

假设检验-p临界值法:
第一步,为检验提供原假设和备择假设:如果罐内装入咖啡重量的总体均值至少为3磅/听,那么Hilltop遵守了产品的承诺。
原假设:H: u >= 3 备择假设:H: u < 3 我们设定:使得当u = 3,犯第一类错误的概率为0.1

 

import numpy as np
import scipy.stats

def DataBox():

    n = 10000
    root_means = np.random.randint(low=29.28, high=32.21, size=n)

    # 生成50组咖啡,每组500瓶,50组的数据组成为咖啡的总体,服从正态分布,且均值在 29 ~ 33 之间的数值
    coffe_all = list([])        # 生成的咖啡总体,数据服从正态分布
    for i in range(n):
        group_coffe = np.random.normal(root_means[i], 0.1, 3)
        group_coffe = group_coffe.tolist()
        coff
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值