文章目录

三步必杀
题目背景
(三)旧都
离开狭窄的洞穴,眼前豁然开朗。
天空飘着不寻常的雪花。
一反之前的幽闭,现在面对的,是繁华的街市,可以听见酒碗碰撞的声音。
这是由被人们厌恶的鬼族和其他妖怪们组成的小社会,一片其乐融融的景象。
诶,不远处突然出现了一些密密麻麻的小点,好像大颗粒扬尘一样。
离得近了点,终于看清楚了。
长着角的鬼们聚在一起,围观着另一只鬼的表演。
那”扬尘”,其实都是弹幕。
勇仪的招数之一,三步之内,所到之处弹幕云集,几乎没有生存可能。
为了强化这一技能,勇仪将对着一排柱子进行攻击。
旧地狱的柱子虽然无比坚固,但保险起见还是先要了解一下这样一套攻击对柱子有多少损伤,顺带也能检验练习的效果。
勇仪决定和其它鬼们商量商量…
“我知道妖怪之山的河童一族有一种叫做计算机的神奇道具,说不定可以借来用用”,萃香说道。
于是旧地狱的鬼族就决定请河城荷取来帮忙了。
“要记录【所有柱子的损伤程度】吗”,荷取问道。
经过进一步的询问,荷取发现他们仅仅需要【所有攻击都完成后】柱子的损伤程度。
任务了解地差不多了,荷取将其中的重要部分提取了出来,记录在了她的工作笔记本上:
(记录的内容见题目描述)
那么实验就这样开始了。
在惊天动地的碰撞声中,勇仪每完成一轮攻击,荷取都忠实地记录下对每根柱子产生的伤害。而此时勇仪就在旁边等待着记录完成,然后再进行下一轮的攻击。
地面上,天色渐晚。
“不想在这里留到深夜啊,不然就回不了家了”,荷取这样想着,手中依然在重复地向计算机中输入新产生的信息。
“真的必须一次一次地记录下每轮攻击对每个柱子产生的伤害吗?有没有更高效的方法?”这一念头在荷取的心中闪过…
(后续剧情在题解中,接下来请看T3)
题目描述
问题摘要:
N N N个柱子排成一排,一开始每个柱子损伤度为0。
接下来勇仪会进行 M M M次攻击,每次攻击可以用4个参数 l l l, r r r, s s s, e e e来描述:
表示这次攻击作用范围为第 l l l个到第 r r r个之间所有的柱子(包含 l l l, r r r),对第一个柱子的伤害为 s s s,对最后一个柱子的伤害为 e e e。
攻击产生的伤害值是一个等差数列。若 l = 1 l=1 l=1, r = 5 r=5 r=5, s = 2 s=2 s=2, e = 10 e=10 e=10,则对第1~5个柱子分别产生2,4,6,8,10的伤害。
鬼族们需要的是所有攻击完成之后每个柱子的损伤度。
输入格式
第一行2个整数 N N N, M M M,用空格隔开,下同。
接下来 M M M行,每行4个整数 l l l, r r r, s s s, e e e,含义见题目描述。
数据保证对每个柱子产生的每次伤害值都是整数。
输出格式
由于输出数据可能过大无法全部输出,为了确保你真的能维护所有柱子的损伤度,只要输出它们的异或和与最大值即可。
(异或和就是所有数字按位异或起来的值)
(异或运算符在c++里为^)
样例 #1
样例输入 #1
5 2
1 5 2 10
2 4 1 1
样例输出 #1
3 10
样例 #2
样例输入 #2
6 2
1 5 2 10
2 4 1 1
样例输出 #2
3 10
提示
样例解释:
样例1:
第一次攻击产生的伤害:2 4 6 8 10
第二次攻击产生的伤害:0 1 1 1 0
所有攻击结束后每个柱子的损伤程度:2 5 7 9 10。
输出异或和与最大值,就是3 10。
样例2:
没有打到第六根柱子,答案不变
数据范围:
本题满分为100分,下面是4个子任务。(x/y)表示(得分/测试点数量)
妖精级(18/3): 1 ⩽ n 1\leqslant n 1⩽n, m ⩽ 1000 m\leqslant1000 m⩽1000。这种工作即使像妖精一样玩玩闹闹也能完成吧?
河童级(10/1): s = e s=e s=e,这可以代替我工作吗?
天狗级(20/4): 1 ⩽ n ⩽ 1 0 5 1\leqslant n\leqslant10^5 1⩽n⩽105, 1 ⩽ m ⩽ 1 0 5 1\leqslant m\leqslant10^5 1⩽m⩽105。小打小闹不再可行了呢。
鬼神级(52/2):没有特殊限制。要真正开始思考了。
以上四部分数据不相交。
对于全部的数据: 1 ⩽ n ⩽ 1 0 7 1\leqslant n\leqslant10^7 1⩽n⩽107, 1 ⩽ m ⩽ 3 × 1 0 5 1\leqslant m\leqslant3\times 10^5 1⩽m⩽3×105, 1 ⩽ l < r ⩽ n 1\leqslant l<r\leqslant n 1⩽l<r⩽n.
所有输入输出数据以及柱子受损伤程度始终在 [ 0 , 9 × 1 0 18 ] [0,9\times 10^{18}] [0,9×1018]范围内。
提示:
由于种种原因,时间限制可能会比较紧,C++选手请不要使用cin读入数据。
by orangebird
一、等差数列差分
1.1 等差数列差分
即两次差分
// cpp
#include <bits/stdc++.h>
int n, m, l, r, s, e, d;
using namespace std;
#define N 10000010 // 10^7+10 预留一些空间, 毕竟差分数组要多占一个位置
long long a[N], b[N], c[N], xxor, mmax;
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++)
{
// 最终数组为 0 0 s s+d s+2d s+3d s+4d 0 0 0 即目标数组
// 一次差分数组为 0 0 s d d d d -e 0 0 即比前一位增量还多的的增量
// 再一次差分数组为 0 0 s d-s 0 0 0 -e-d e 0 即差分
// 所以标记出 差分数组 后, 经过两此前缀和, 即得到最终的目标数组
// 而差分数组为 c[l]+=s, c[l+1]+=d-s, c[r+1]-=e+d, c[r+2]+=e
scanf("%d%d%d%d", &l, &r, &s, &e);
d = (e - s) / (r - l);
c[l] += s;
c[l + 1] += d - s;
c[r + 1] -= e + d;
c[r + 2] += e;
}
// 求前缀和
for (int i = 1; i <= n; i++)
{
b[i] = b[i - 1] + c[i]; // c[i] = b[i]-b[i-1]
a[i] = a[i - 1] + b[i]; // b[i] = a[i]-a[i-1]
xxor ^= a[i]; // 题目要求的异或和
if (a[i] > mmax)
{
mmax = a[i];
}
}
printf("%lld %lld", xxor, mmax);
return 0;
}
可看出, 因为 c[i] = b[i]-b[i-1], 所以 i 从1开始 才能得到 b[1]=b[0]+c[1], 才能得到 a[1]=a[0]+b[1]
即差分数组求前缀和时, 都是从[1…n] 左比右闭区间求的. 这样才能根据 diff[i] = presum[i] - presum[i-1], 来得到 presum[i] = presum[i-1] + diff[i]
二、多语言解法
C p p / G o / P y t h o n / R u s t / J s / T s Cpp/Go/Python/Rust/Js/Ts Cpp/Go/Python/Rust/Js/Ts
// cpp 同上
// go
# python
// rust
// js
// ts