LC11. 盛最多水的容器(双指针-简单)

本文介绍了一种利用双指针技巧解决的算法问题,给定一组非负整数坐标,目标是在坐标轴上找到两条垂直线形成的最大容量容器。通过维护当前面积和最大面积,逐步调整指针位置,达到O(n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LC11. 盛最多水的容器

题目:给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
思路:双指针 i j 指向头尾
        在整个过程维护一个最大的面积。
        当前面积 > 最大面积    赋值给最大面积
        当前面积 <= 最大面积   让 ij对应的最小元素的下标+1
复杂度: 时间复杂度O(n)  空间复杂度 O(1)
代码:

        ps:下边代码加入了标准输入

'''
    题目:给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。
        找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
    思路:双指针 i j 指向头尾
        在整个过程维护一个最大的面积。
        当前面积 > 最大面积    赋值给最大面积
        当前面积 <= 最大面积   让 ij对应的最小元素的下标+1
    ps:下边代码加入了标准输入
    复杂度: 时间复杂度O(n)  空间复杂度 O(1)

'''

import sys

def maxArea(nums):
    i, j = 0, len(nums)-1
    maxarea = 0

    while i <= j:
        temparea = (j-i)*min(nums[i], nums[j])
        if temparea > maxarea:
            maxarea = temparea
        if nums[i] < nums[j]:
            i += 1
        else:
            j -= 1
    return maxarea

line = sys.stdin.readline().strip().split(",")
nums = []
for i in range(len(line)):
    temp = line[i]
    if i == 0:
        nums.append(int(temp[1]))
    elif i == len(line)-1:
        nums.append(int(temp[0]))
    else:
        nums.append(int(temp))
print(nums)
print(maxArea(nums))

路虽远,行则将至。事虽难,做则必成 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值