轻松学习SQL数据分析:在实战中学习SQL数据分析,轻松应对学习、工作
案例一:零食商铺销售分析
【项目背景】
本次项目旨在深入分析2023年下半年(7月1日至12月31日)某平台上综合性零食的销售数据,以支持平台在2023年针对这一热门品类的广告投放策略。通过对购买人数、不同店铺表现及具体商品销售数据的全面研究,我们期望能够揭示综合性零食的整体销售趋势、价格区间分布以及消费者的地域偏好。
具体来说,我们的分析将聚焦于以下几个关键方面:
- 整体销售数据分析:首先,我们将统计综合性零食在2023年下半年的总销售额、销售量及购买人次,从而掌握该类商品的整体市场热度与增长态势。
- 价格区间研究:进一步,我们将分析不同价格区间的综合性零食销售情况,了解哪些价格段的商品更受消费者青睐,为平台定价策略提供参考。
- 地域偏好分析:此外,我们还将深入研究综合性零食消费者的地域分布情况,揭示不同地域消费者的购买习惯、需求特点,从而指导平台在不同地区投放更为精准的广告内容。
通过以上分析,我们将为平台提供详尽的数据支持和策略建议,助力其在2021年针对综合性零食品类制定更为精准有效的广告投放策略,进一步提升品牌影响力和市场竞争力。
【数据集介绍】
下表展示了一个示例数据集,其中包含了关于综合性零食在不同店铺的销售信息。**请注意,这些数据是虚拟的,但旨在提供一个清晰的数据结构参考。**以下是数据集中关键字段的详细描述:商品名称、店铺名称、价格、购买人数、买家地址。
综合性零食店铺销售数据
【经营分析】
1.分析平台售卖综合性零食的店铺数、总销售额、商品种类数、总购买人数等
为了获取店铺数、总销售额、商品种类数以及总购买人数等关键统计数量,我们需要利用SQL的汇总函数,并确保在统计过程中去除重复数据。使用DISTINCT
关键字可以有效地处理重复数据。
对于销售额的计算,由于在本案例中每人每次只购买一件商品,因此销售额可以通过将每件商品的价格(价格
字段)与购买人数(购买人数
字段,此处实际上代表销售数量)相乘得出。
SELECT
COUNT(DISTINCT shop_name) AS "店铺数",
COUNT(DISTINCT product_name) AS "商品种类数",
CONCAT(ROUND(SUM(price * purchase_count) / 10000, 2), '万元') AS "总销售额",
CONCAT(ROUND(SUM(purchase_count) / 10000, 2), '万人') AS "总购买人数"
FROM
snack_sales_data
查询结果:
分析结论:
平台综合性零食市场活跃,拥有1425家店铺,4156种商品,总销售额达到30353.34万元,吸引了701.49万消费者购买。市场竞争激烈,消费者需求旺盛。
2.找出销售额排名前10的店铺,并明确其购买人数、销售额
为了找出销售额排名前10的店铺,并明确其购买人数、销售额,我们可以按照以下步骤进行操作:
(1) 确定每个店铺的购买人数与销售额
首先,我们需要按照店铺名称对数据进行分组(GROUP BY 店铺名称
),并计算每个店铺的总销售额。销售额可以通过将每个商品的销售单价(价格)与相应的购买人数相乘,然后再对所有商品进行求和得出(SUM(价格 * 购买人数)
)。同时,我们也可以统计出每个店铺的总购买人数(SUM(购买人数)
)。
(2) 找出销售额排名前10的店铺
在得到每个店铺的销售额之后,我们需要对这些店铺按照销售额从高到低进行排序(ORDER BY SUM(价格 * 购买人数) DESC
)。然后,使用LIMIT 10
来限制返回结果的行数,从而得到销售额排名前10的店铺。
结合以上步骤,我们可以构建如下的SQL查询语句: