对于一个n*m的棋盘,有些地方不能覆盖,将其余部分用1*2的骨牌和1*1的骨牌覆盖,要求1*1的骨牌的使用数量在c到d之间,问可行的方案数
数据范围:n不超过100,m不超过10,c小于等于d,d不超过30
插头DP,需要使用滚动数组来减小内存消耗
#include <cstdio>
#include <cstring>
const int mod=1000000007;
int dp[2][1024][21];
char s[100][11];
int n,m,c,d,mm;
int main() {
int i,j,k,l;
int ii,iip;
while (scanf("%d%d%d%d",&n,&m,&c,&d)!=EOF) {
memset(dp,0,sizeof(dp));
mm=1<<m;
for (i=0;i<n;i++) scanf("%s",s[i]);
dp[0][mm-1][0]=1;
for (i=0;i<n;i++) {
for (j=0;j<m;j++) {
ii=i*m+j&1;
iip=ii^1;
memset(dp[iip],0,sizeof(dp[iip]));
for (k=0;k<mm;k++) {
for (l=0;l<=d;l++) {
//printf("dp[%d][%d][%d][%d]=%d\n",i,j,k,l,dp[ii][k][l]);
if (s[i][j]=='0') {
if (k&1<<j) dp[iip][k][l]=(dp[iip][k][l]+dp[ii][k][l])%mod;
} else {
if (k&1<<j) {
dp[iip][k^1<<j][l]=(dp[iip][k^1<<j][l]+dp[ii][k][l])%mod;
if (l<d) dp[iip][k][l+1]=(dp[iip][k][l+1]+dp[ii][k][l])%mod;
if (j>0&&(k&1<<j-1)==0)
dp[iip][k|1<<j-1][l]=(dp[iip][k|1<<j-1][l]+dp[ii][k][l])%mod;
} else {
dp[iip][k|1<<j][l]=(dp[iip][k|1<<j][l]+dp[ii][k][l])%mod;
}
}
}
}
}
}
//for (k=0;k<mm;k++)
//for (l=0;l<=d;l++)
//printf("dp[%d][%d][%d][%d]=%d\n",n+1,0,k,l,dp[iip][k][l]);
int ans=0;
for (l=c;l<=d;l++)
ans=(ans+dp[iip][mm-1][l])%mod;
printf("%d\n",ans);
}
return 0;
}