[POJ 3468] A Simple Problem with Integers [树状数组]

本文详细介绍了线段树模板题中的区间修改与区间查询,通过使用树状数组优化实现,提高了算法效率。文章包括了理论解释、代码实现以及实例演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给一列数,有区间修改区间查询,线段树模板题。

使用树状数组的区间修改区间查询版本..

设原数组为a[],现记录b[i]为原数组中a[1]...a[i]整体被加了多少,c[i]为原书组中a[1]...a[i]整体被加了多少的和,即c[i]=b[i]*i。

进行区间修改[l,r]时,只需让b[r]+=x,b[l-1]-=x即可,对应的c[i]的变化量为b[i]*i。

进行区间查询[1,l]时,只需计算c[1]+c[2]+...+c[l]+(b[l+1]+b[l+2]+...+b[n])*l即可。

#include <cstring>
#include <cstdio>

struct BIT {
	int n;
	long long b[100002];
	long long c[100002];
	void clear(int nn) {
		n=nn;
		for (int i=0;i<=n;i++) b[i]=c[i]=0;
	}
	inline int lb(int i) {
		return i&-i;
	}
	void set(long long a[],int i,long long x) {
		if (i==0) return;
		for (;i<=n;i+=lb(i)) a[i]+=x;
	}
	long long get(long long a[],int i) {
		long long ans=0;
		for (;i>0;i-=lb(i)) ans+=a[i];
		return ans;
	}
	void set(int x,int y,long long z) {
		set(b,y,z);
		set(b,x-1,-z);
		set(c,y,z*y);
		set(c,x-1,-z*(x-1));
	}
	long long get(int i) {
		return get(c,i)+(get(b,n)-get(b,i))*i;
	}
};

int n,q;
BIT c;

int main() {
	int i,x,y,z;
	char cc;
	scanf("%d%d",&n,&q);
	c.clear(n);
	for (i=1;i<=n;i++) {
		scanf("%d",&x);
		c.set(i,i,x);
	}
	while (q--) {
		scanf(" %c",&cc);
		if (cc=='C') {
			scanf("%d%d%d",&x,&y,&z);
			c.set(x,y,z);
		} else {
			scanf("%d%d",&x,&y);
			printf("%lld\n",c.get(y)-c.get(x-1));
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值