Efficient Autonomous Exploration Planning of Large-scale 3-D Environments文章解读

本文提出一种结合基于边界的策略与RH-NBVP方法的大规模场景主动探索方案。该方案利用RRT扩展来保存未探索的高增益边界点,并采用高斯过程对空间点的增益进行建模计算,实现全局引导与局部探索的有效融合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

本文主要是提出了一种面向大规模场景主动探索问题的方法,融合了基于边界的策略和RH-NBVP的方法。后者在局部区域中的探索具有较大的优势,而前者在引导机器人进行全局探索方面具有优势,因此作者将两者结合起来。这是基本的思想。当然了,其中也针对效率做了一些优化。

首先,根据RRT的扩展去保存一些未被探索的含有增益的边界点。
文中相当一部分利用高斯过程对空间点的增益进行建模与计算,个人认为对于实际应用过程中,意义不大。
全局引导加上局部探索,是核心。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值