[LeetCode] 01矩阵中最大矩形 Maximal Rectangle

在M*N的01矩阵中寻找只包含1的最大矩形,转换为求以某行为底边的histogram的最大矩形问题。通过枚举每行并应用单调栈算法,可以找到最大矩形。相关问题包括寻找最大子正方形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关问题1:[LeetCode] Find max subsquare whose border values are all 1

相关问题2:[LeetCode] 01矩阵中最大正方形 Maximal Square


Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.

在一个M * N的矩阵中,所有的元素只有0和1, 找出只包含1的最大矩形。

例如:图中是一个4 × 6的矩形,画出红色的是我们要找到的区域。

仔细观察发现:因为我们要找的是矩形,所以它一定是以 某个行元素开始的,这样的话,其实我们要找到的某个矩形就转换成 一某一个行开始的 histogram的最大矩形问题了。

那么我们原始矩形可以变成如下的形式的数据:


第一行表示,我们以第一行作为底边,所形成的 histogram的高度,其他行也类似。所以问题变成了 枚举每一行,然后求出每一行对应的histogram的最大矩形。利用单调栈求histogram的最大矩形可以参考:http://blog.csdn.net/jiyanfeng1/article/details/8067265

代码如下:

    int maximalRectangle(vector<vector<char> > &matrix) {
    // max rectangle in a 0-1 matrix
    
        if(matrix.size()==0) return 0;
        
        int* hist = new int[matrix[0].size()];
        memset(hist, 0, sizeof(int)*matrix[0].size());
        
        int max_ = 0;
        
        for(int i=0; i<matrix.size(); i++)
        {
            for(int j=0; j<matrix[0].size(); j++)
            {
                if(matrix[i][j]=='1')
                    *(hist+j) += 1;
                else
                    *(hist+j) = 0;
            }
            
            max_ = max(max_, maxRectInHistogram(hist, matrix[0].size()) );
        }
        
        return max_;
    }
    
    int maxRectInHistogram(int hist[], int n)  
    // hist: contains the heights of the bars   
    // n: the number of the bars in the histogram.  
    {  
            int* arr = new int[n];// 申请一个额外的数组  
            arr[0] = hist[0];  
            int max = hist[0]; // 最大面积  
      
            for(int i=1; i<n; i++)  
            {  
                    arr[i] = hist[i];  
                    for(int j=i-1; j>=0; j--)  
                            if(arr[j]>arr[i]){  
                                    if(arr[j]*(i-j)>max)  
                                            max = arr[j]*(i-j);  
                                    arr[j] = arr[i];  
                            }  
                            else break;  
                    //数组arr里的元素,保持非递减的顺序。  
            }  
      
            //重新扫描一边,以更新最大面积  
            for(int i=0; i<n; i++)  
                    if(arr[i]*(n-i)>max)  
                            max = arr[i]*(n-i);  
            return max;  
    } 


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值