
R
文章平均质量分 91
亚图跨际
跨学科视角展现 -- 计算思维
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
R和Julia免疫细胞映射到组织切片
将免疫细胞映射到组织切片是一种整合多种技术的高精度方法,用于揭示细胞在组织微环境中的空间分布。通过使用如空间转录组学、免疫荧光染色或单细胞RNA测序等技术,科学家可以精确定位特定免疫细胞类型,并分析它们与组织结构或病理学变化的关联。这项技术在研究免疫反应、肿瘤微环境以及感染疾病等领域具有重要应用,为理解复杂生物系统提供了关键洞察。原创 2024-11-26 10:38:04 · 760 阅读 · 0 评论 -
Python和R统计检验比较各组之间的免疫浸润
统计检验用于比较各组间的免疫浸润差异,通过定量分析特定免疫细胞的浸润水平,评估它们在不同条件或组别下的显著性变化。常用方法包括t检验、Mann-Whitney U检验、ANOVA或Kruskal-Wallis检验,选择依据数据分布及样本特点。这些分析可揭示免疫微环境特征,助力探索疾病机制、预测治疗效果或筛选潜在生物标志物,为精准医学提供数据支持。原创 2024-11-26 10:35:28 · 965 阅读 · 0 评论 -
Python和R基因组及蛋白质组学和代谢组学
基因组病理学是一门将基因组学和病理学相结合的领域,旨在了解癌症等疾病的分子基础及其在细胞水平上的进展原创 2024-11-24 10:43:04 · 1128 阅读 · 0 评论 -
Python和R荧光分光光度法
荧光分光光度法是一种分析方法,通过测量物质在吸收光能后发射的荧光来定性和定量分析样品。该技术基于分子在受到特定波长的激发光照射时从激发态返回基态时发射荧光,发射光的强度和波长特征用于分析。此方法具有高灵敏度和选择性,适用于检测极微量的化合物,广泛应用于化学分析、生物医学研究和环境检测等领域。其优点是干扰少、响应迅速,但对光源稳定性和检测条件要求较高。原创 2024-11-22 19:09:33 · 1033 阅读 · 0 评论 -
MATLAB和Python及R瑞利散射
在MATLAB中处理瑞利散射(Rayleigh scattering)通常涉及到理解和应用瑞利散射公式。瑞利散射描述了当光波与比其波长小得多的粒子(如气体分子或小颗粒)发生相互作用时,散射光的强度与波长的关系。原创 2024-11-14 11:20:17 · 2431 阅读 · 0 评论 -
MATLAB和R及Python伪时间分析
伪时间分析是一种用于研究细胞在分化或响应特定刺激过程中的动态变化的方法。这种技术在生物信息学中尤其常用于处理单细胞 RNA 测序数据,以理解细胞状态在不同时间点如何演变。结合 MATLAB 进行这种分析可以帮助检测和分析不同条件下的选择性扰动效应,如药物处理或基因编辑。原创 2024-11-10 18:59:36 · 1223 阅读 · 0 评论 -
R和MATLAB及Python混合效应模型
使用 R 进行混合效应模型的分析是一种强有力的方法,尤其在研究带有嵌套或重复测量的复杂数据结构时。混合效应模型能够有效地检测和分析多层级数据中的固定效应和随机效应,这在研究选择性扰动效应时尤为有用。原创 2024-11-10 17:45:08 · 1555 阅读 · 0 评论 -
MATLAB和Python及R潜变量模型和降维
在 MATLAB 中,潜变量模型 (Latent Variable Models, LVMs) 和降维技术被广泛用于复杂数据的分析,例如基因表达数据或其他高维数据集。这些工具有助于揭示隐藏的结构并检测扰动(例如基因敲除或化学处理)在数据中的影响原创 2024-11-08 12:31:59 · 885 阅读 · 0 评论 -
MATLAB和Python及R聚类和亚群识别
在 MATLAB 中进行聚类和亚群识别可以使用一些内置函数和工具箱,如 **Statistics and Machine Learning Toolbox** 和 **Bioinformatics Toolbox**。以下是如何使用 MATLAB 进行聚类和亚群识别的详细步骤,尤其是用于检测和分析选择性扰动效应。原创 2024-11-08 10:37:11 · 1081 阅读 · 0 评论 -
MATLAB和R及Python亚群差异表达分析
在进行亚群差异表达分析以检测和分析选择性扰动效应时,MATLAB 可以通过一系列步骤来实现这一目的。以下是如何使用 MATLAB 进行这样的分析的简要步骤和示例。原创 2024-11-08 10:33:29 · 736 阅读 · 0 评论 -
MATLAB和R及Python病例对照分析
在MATLAB中,病例对照分析通常用于比较暴露组与非暴露组的结果,并计算风险比、优势比(Odds Ratio, OR)等统计量。以下是一个基于2x2列联表的病例对照分析步骤,包括OR计算、置信区间、卡方检验等内容。原创 2024-11-07 11:59:39 · 1296 阅读 · 0 评论 -
Python和R及Julia妊娠相关疾病生物剖析算法
1. 算法使用了矢量投影、现代优化线性代数、空间分区技术和大数据编程2. 利用相应向量空间中标量积和欧几里得距离的紧密关系来计算3. 使用妊娠相关疾病(先兆子痫)、健康妊娠和癌症测试算法模型4. 使用相关性投影利用相关性和欧几里得距离之间的关系原创 2024-10-03 23:15:32 · 1529 阅读 · 5 评论 -
Python或R时偏移算法实现
1. 计算单变量或多变量时序距离,使用欧几里得、曼哈顿等函数量化不同时序差异。2. 量化生成时序之间接近度相似性矩阵。3. 使用高尔距离和堪培拉距离等相似度测量。4. 实现最小方差匹配算法,绘制步进模式的图形表示。5. 其他语言包算法实现原创 2024-10-01 20:18:27 · 1187 阅读 · 0 评论 -
Python体素化脑信息图混淆矩阵相似性指标评估
1. 使用相似性度量等算法类别学习评估大脑神经相似性。2. 使用混淆矩阵分类器评估相似性,使用斯皮尔曼相关性关联相似度矩阵与混淆矩阵。3. 特征化体素选择,优化相似性度量矩阵,用分类器近似大脑状态信息。4. 将先验分布建模为二项分布,将更新后的分布建模为另一个二项分布,并计算库尔巴克-莱布勒散度5. 使用三种分类器:高斯朴素贝叶斯、k最近邻和线性支持向量机。6. 使用探照灯视觉检查脑图像欧几里得、马哈拉诺比斯和皮尔逊相关性的测量指标原创 2024-09-28 16:51:45 · 1072 阅读 · 0 评论 -
Python和R均方根误差平均绝对误差算法模型
1. 回归模型误差评估指标归一化均方根误差2. 生态状态指标3. 神经网络成本误差计算4. 气体排放气候算法模型原创 2024-09-13 14:35:20 · 1596 阅读 · 0 评论 -
Python(R)均方根误差平均绝对误差导图
1. 回归模型评估指标2. 评估薪水预测模型3. 评估员工倦怠率模型4. 评估大气分析生成式对抗模型5. 目标对象缺失下,性能估算法追踪模型误差指标6. 降尺度大气学模拟模型准确性评估7. 蛋白染色质相互作用模型评估原创 2024-08-26 17:35:58 · 1031 阅读 · 0 评论 -
C++和R穿刺针吸活检肿瘤算法模型模拟和进化动力学量化差异模型
:dart:模拟肿瘤细胞增生进化轨迹 | :dart:肿瘤生长的随机空间细胞自动机模型 | :dart:模拟穿刺活检的收集空间局部的肿瘤块,模拟针吸活检采集长而薄的组织样本 | :dart:构建不同参数模拟合成肿瘤测试集 | :dart:算法模型计算先验分布、计算概率分布的瓦瑟斯坦距离和欧氏距离 | :dart:细胞进化系统动力学量化分裂差异模型。原创 2024-07-27 18:34:57 · 1021 阅读 · 0 评论 -
Python药物副作用生物图分析算法和矩阵降维算法
:dart:人体疾病模块网络结构位置与病理生物学关系 | :dart:药物与药物靶点相互作用 | :dart:细胞和蛋白质之间的作用分层 | :dart:疾病和症状之间的联系 | :dart:药物与副作用之间的联系 | :dart:生物学分析原创 2024-07-26 10:49:54 · 952 阅读 · 0 评论 -
Python和R水力电导率和达西流神经算子
:scroll:水力电导率机器学习预测土壤特性变化 | :scroll:三维体达西流静态和交互式模拟:scroll:Python流体数据统计模型和浅水渗流平流模型模拟:scroll:Python高克勒-曼宁-斯特里克勒公式计算一维流量:scroll:Python和Julia河流湖泊沿海水域特征数值算法模型:scroll:Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)原创 2024-06-12 18:04:36 · 1132 阅读 · 0 评论 -
Python | R 潜在混合模型
:scroll:Python | MATLAB | R 心理认知数学图形模型推断 | :scroll:信用卡消费高斯混合模型 | :scroll:必修课学业成绩分布异常背景混合模型潜在类别分析原创 2024-06-03 17:52:29 · 1057 阅读 · 0 评论 -
Python | MATLAB | R 心理认知数学图形模型推断
图形模型推断二元过程概率::pen:模型1:确定成功率 θ 的后验分布 | :pen:模型2:确定两个概率差 $\delta$ 的后验分布 | :pen:模型3:确定底层概率,后验预测 | :pen:模型4:推断概率分布和试验次数 :dart:时间和记忆关系 | :dart:心里信号检测 | :dart:外部物理刺激内部心理感觉 | :dart:超感知学 | :dart:语义相关连续回忆 | :dart:尺度不变记忆、感知和学习 | :dart:风险判断和偏好个体心里差异 | :dart:多维心理刺激个体相原创 2024-06-02 19:12:50 · 1221 阅读 · 0 评论 -
Python | R 雌雄配对和鱼仔变异马尔可夫链
:dart:马尔可夫链::pen:天气状态马尔可夫链和马尔科夫矩阵 | :pen:多项式隐马尔可夫模型,及其高斯分布 | :pen:算法:前向、后向、前向-后向、维特比算法 | :pen:最大似然学习、特里-韦尔奇算法 | :pen:隐马尔可夫模型贝叶斯学习、估计分布的近似算法 | :pen:词类消歧隐马尔可夫模型 | :pen:马尔可夫决策过程。:dart:马尔可夫模型场景::dart:张量网络分解马尔可夫链 | :dart:动物移动最大似然分析 | :dart:文本语义聚类情感基调分析 | :dar原创 2024-05-30 17:41:24 · 37382 阅读 · 0 评论 -
Python | R | MATLAB群体消息和遗传病筛选多元统计模型
🎯概率分布结构模型:有向无环图模型结构、部分有向无环图、动态贝叶斯网络、结构方程模型、广义噪声或模型、连接树、聚类图、因子图、马尔可夫链 | 🎯多类分类模型:朴素贝叶斯分类器、求和朴素贝叶斯分类器、高斯朴素贝叶斯分类器、树增强贝叶斯分类器、贝叶斯网络增强贝叶斯分类器、半朴素贝叶斯分类器 | 🎯多维分类模型:贝叶斯链分类器 | 🎯分层分类模型:贝叶斯网络和链式分类器的分层分类器。🎯隐马尔可夫模型 | 🎯马尔可夫随机场模型 | 🎯贝叶斯网络模型:学习树、学习有向无环图 | 🎯马尔可夫决策过程模型原创 2024-05-28 17:41:55 · 968 阅读 · 0 评论 -
R和Python市场篮分析算法及行为分析模型
1. 行为数据分析::dart:线性统计研究生学业表现::pen:绘制测试分数配对图 | :pen:构建简单线性回归模型,拟合数据 | :pen:构建多线性回归,三维可视化数据拟合模型 | :pen:测试多重共线性 | :pen:二次模型改善拟合度。:dart:二项式逻辑回归分析销售人员升职与否::pen:绘制业绩配对图 | :pen:业绩对数赔率建模。:dart:名义类别多项逻辑回归选择商业保险::pen:绘制保险类别配对图 | :pen:分层二项式建模产品选择性。:dart:有序类别结比例赔率逻辑回归原创 2024-05-01 22:25:55 · 1276 阅读 · 0 评论 -
Python和R热释光动能朗伯W函数解析方程
Python | R | 数值计算 | 绘图 | 热释光 | 离子 | 数学 | 方程 | 常微分方程 | 求解器 | 活化能 | 频率因子 | 捕获率 | 模拟 | 峰值 | 加热速率 | 材料 | 固体 | 动能 | 卷积 | 郎伯W函数 | 模型 | 离域电子 | 异常 | 衰落 | 辉光曲线 | 反卷积 | 量子 | 局域跃迁 | 积分 | 求和原创 2024-04-22 21:25:30 · 723 阅读 · 0 评论 -
R降维预测癌症良性或恶性
详细解释了选择主成分分析 (PCA) 等降维技术的原因。 构造一个线性判别函数来预测新的观察结果。使用这个测量细胞核大小和形状的 32 个变量的数据集,目标是创建一个模型,使我们能够预测乳腺癌细胞是良性还是恶性。特征是根据乳房肿块的细针抽吸 (FNA) 的数字化图像计算的。 它们描述了图像中存在的细胞核的特征。 我们的数据集由 569 个观测值和 32 个变量组成。 有一个 ID 变量、一个显示它们是良性还是恶性的诊断变量,以及 30 个详细描述细胞核大小和形状的测量变量。 诊断是一个分类变量,是我们的响应原创 2022-07-07 10:16:59 · 344 阅读 · 0 评论