
mmclassification
文章平均质量分 55
Mr.Q
纸上得来终觉浅,绝知此事要躬行。 ---陆游
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
shufflenet unit原理和实现
前言 解决的问题:分组卷积的输出之和前面部分输入相关。 提出shufflenet unit. 在1x1的卷积后,把组内的特征,再分成g组,随机关联到后面的g组,然后对每一组都如此。 论文 ShufflfleNet: An Extremely Effificient Convolutional Neural Network for Mobile Devices https://arxiv.org/pdf/1707.01083v1.pdf shufflenet unit原理 图片(a)原创 2021-08-11 14:17:11 · 503 阅读 · 0 评论 -
mmclassification backbone04-mobilenetV3
前景概述 (1)mobilenetV2; (2)mobilenetV3主要贡献简单来说,有三点,一是SE-Net优化了InvertedResidual,二是使用NAS搜索出最优的网络结构,三是提出了新的激活函数h-swish. mobilenetV3论文 https://arxiv.org/pdf/1905.02244.pdf mobilenetV3网络结构(Large) 网络结构逐层分析 第1层conv2d,结构是conv2d + bn + HSwish. 注意这里的激活函数是HSw.原创 2021-08-06 17:12:09 · 462 阅读 · 0 评论 -
mmclassification backbone03-mobilenetV2
mobilenetV2论文:https://arxiv.org/pdf/1801.04381.pdf mobilenetV2网络结构: 网络结构逐层分析 第1层是普通的conv2d+bn+relu6. mmclassification实现层层封装,不好看,这里贴简单实现。 ef conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), .原创 2021-08-06 10:24:22 · 635 阅读 · 0 评论 -
mmclassification backbone02-LeNet5
lenet5简单来说,就是3个卷积层,加上2个全连接层。如下所示 (1)参数num_classes=-1, 则用作backbone,不限制输入图片大小,网络结构由2个conv+tanh+avgpool2d、1个conv+tanh,共3个卷积层组成。 (2)参数num_classes>0, 则用作分类器,限制输入图片大小(b, 1, 32, 32),前面3个卷积层后,先view或者squeeze成一维向量,再接分类器头,该头由2个全连接层组成,即linear+tanh+linear. class原创 2021-08-05 10:23:53 · 187 阅读 · 0 评论 -
mmclassification backbone01-AlexNet
AlexNet是直筒结构。 (1) 参数num_classes=-1,则用作backbone,该backbone有3个conv+relu+maxPooling,中间2个conv+relu,共含5个卷积组成。 (2) 参数num_classes>0,则用作分类网络,前面的5层卷积后,先view,再接分类器,该分类器由2个dropout+linear+relu、1个linear,共含3个全连接层组成。 @BACKBONES.register_module() class AlexNet(BaseB原创 2021-08-05 09:42:03 · 290 阅读 · 0 评论