conda安装库时报错failed with initial frozen solve. Retrying with flexible solve.

本文解决了使用conda安装keras时遇到的失败问题,通过设置更灵活的通道优先级,成功安装并避免了版本冲突。最终选择使用tensorflow.keras替代keras,以确保代码兼容性和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

conda安装库时报错:

conda install keras
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.

解决方案:

conda config --set channel_priority flexible

然后就正常运行了(换了更加灵活的方式???)

conda install keras
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: E:\Apps\Anaconda3

  added / updated specs:
    - keras


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    tensorflow-base-1.15.0     |mkl_py37h190a33d_0        36.2 MB
    ------------------------------------------------------------
                                           Total:        36.2 MB

The following NEW packages will be INSTALLED:

  keras              pkgs/main/win-64::keras-2.2.4-0
  keras-base         pkgs/main/win-64::keras-base-2.2.4-py37_0

The following packages will be DOWNGRADED:

  tensorflow                       2.0.0-mkl_py37he1bbcac_0 --> 1.15.0-mkl_py37h3789bd0_0
  tensorflow-base                  2.0.0-mkl_py37hd1d5974_0 --> 1.15.0-mkl_py37h190a33d_0
  tensorflow-estima~                     2.0.0-pyh2649769_0 --> 1.15.1-pyh2649769_0


Proceed ([y]/n)? y


看了一下安装过程,好像是keras基于底层是tensorflow1.5,呃。。。

然后就放弃了keras,重构了下代码,用tensorflow.keras代替了keras。大部分的keras在tensorflow.keras都有,有些不能直接对应的自己去网上查查就行了。

### 解决 Conda 报错 'Failed with Initial Frozen Solve. Retrying with Flexible Solve.' 当使用 `conda` 进行包管理,如果遇到 `'failed with initial frozen solve. Retrying with flexible solve.'` 的报错提示,通常表明当前环境中存在依赖冲突或其他配置问题。以下是针对该问题的具体分析和解决方案: #### 错误原因 这种错误的核心原因是目标包与其所在环境中的其他软件包之间存在不兼容性或依赖关系无法满足的情况[^1]。具体可能涉及以下几个方面: - 当前 Python 版本与所需安装的包版本不匹配。 - 已有环境中某些已安装的包与其他新安装的包发生冲突。 - 缓存文件损坏或者过期。 #### 常见解决方法 ##### 方法一:检查并调整 Python 版本 确保所使用的 Python 版本与目标包的要求一致。例如,在尝试安装 PyTorch 发现其官方文档指出仅支持 Python 3.8 至 3.11 的版本[^3]。因此可以执行以下操作来确认当前 Python 版本是否合适: ```bash python -V ``` 如果不符,则需降级至受支持范围内。通过创建一个新的虚拟环境指定较低版次实现这一目的: ```bash conda create --name myenv python=3.9 ``` ##### 方法二:更新 Conda 和 Mamba (推荐工具) 保持最新状态有助于减少潜在 bug 并提高求解效率。运行下面命令完成升级过程: ```bash conda update conda conda install mamba -c conda-forge mamba init shell-name # 如果适用的话初始化特定shell ``` 之后利用更高效的 solver 替代默认选项加速解决问题速度: ```bash mamba install package_name ``` ##### 方法三:单独处理冲突包 有个别顽固型组件会阻碍整体进展。此可考虑将其独立移除后再重新引入以规避干扰因素影响全局稳定性: ```bash conda remove conflicting_package conda install target_package ``` ##### 方法四:构建纯净的新环境 对于复杂场景下难以定位确切矛盾点的情形来说,最稳妥的办法莫过于另起炉灶——即建立一个全新的隔离空间专门承载待部署项目所需的全部要素而不掺杂任何既有残留物的影响: ```bash conda create --name fresh_env python=x.x conda activate fresh_env conda install required_packages ``` ##### 方法五:清除旧数据重试 偶尔历史遗留下来的临文件也可能成为绊脚石。对此采取清理措施往往能够起到立竿见影的效果: ```bash conda clean --all ``` 以上策略综合运用即可有效应对绝大多数此类状况的发生几率降到最低限度之内[^2]。 ```python import sys print(f"Python Version: {sys.version}") ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值