了解 GenAI 和 Stochos 的协同作用如何彻底改变 Web 应用程序创建,使其比以往任何时候都更智能、更高效。
挑战
在快速发展的 Web 应用程序开发领域,公司面临着许多挑战。其中包括对更快的开发周期、更高的质量标准以及日益复杂的功能的集成的需求。此外,在保持成本效益的同时不断创新的压力又增加了一层困难。
传统方法往往无法满足这些多方面的需求。手动编码、广泛的测试阶段和迭代设计过程可能既耗时又容易出错,从而导致延迟和成本增加。显然需要一种更智能、更简化的方法。
工程解决方案
集成 GenAI 和 Stochos 来优化 Web 应用程序开发流程可以解决这些挑战,并利用先进技术开发强大的解决方案。通过利用人工智能和复杂算法的力量,我们可以自动执行重复性任务、提高准确性并显着缩短开发时间。
个案研究:
此前,使用简化淋浴喷头的 2D 基准案例(图 1)来演示 optiSLang 中的贝叶斯优化概率推理 (PI-BO) 应用程序1.
图 1.2D 基准测试案例
本研究探索了满足最大压降和最小均匀性两个输出条件的最优设计(即内孔直径)。在 20 种设计中,帕累托前沿解决方案建议,将 19 种设计作为最佳设计(图 2)。
图 2.PI-BO 优化解决方案
后来,该研究扩展到使用独立 Stochos 生成几何预测应用程序。该应用程序利用经过训练的模型和提供的设计案例,并为这些案例创建了有关压力和速度分布的可视化(图 3)2. 预测的几何形状和压力等值线与 CFD 预测非常吻合。
图 3.Stochos App 预测几何形状和压力场与 Fluent 仿真对设计的比较
当前的研究通过利用“设计目标”来创建优化设计和相关压力分布,从而增强了以前的应用程序。生成 Web 应用程序的工作框架总结在图 4 中。
图 4.生成 Web 应用程序的原理图工作框架
有两个脚本与应用生成相关联:
“训练模型”脚本读取多个几何和标量数据,对其进行预处理,根据几何和值训练 3D 回归模型,并将生成的模型保存到磁盘。
来自 Stochos 框架的高斯过程深度无限混合 (DIM-GP) 回归模型,用于拟合几何(点云)数据并将其与回归目标相关联,包括形状(几何)和标量优化参数。图 5 显示了代码的相应部分。该脚本在 Anaconda Spyder 平台中运行并生成press_vel_model。
图 5.训练模型脚本代码
应用生成脚本利用先前生成的训练模型以及标量数据包。该代码使用 AI 模型创建了一个基于 Streamlit 的交互式 Web 仪表板,用于几何预测。该代码增加了滑块(使用 Streamlit),供用户在实际数据范围内指定物理参数(如“压降 [Pa]”和“均匀性 [Pa]”。
当用户单击“更新网格和预测”按钮时,它会使用生成模型创建以用户指定的标量为条件的新几何体(“网格”),调整网格,使用回归模型预测网格上的字段值,平滑预测(可选),并使用 PyVista 可视化网格和预测,将 3D 图嵌入到应用程序中。
图 6 显示了高压降和低均匀性目标的预测设计特征和压力分布,比例如图 3 所示。
图6.Web 应用程序生成设计,实现高压降和低均匀性
图 7 显示了低压降和低均匀性的压力分布预测设计。
图7.Web 应用程序生成设计,实现低压降和低均匀性
好处
GenAI 和 Stochos 的集成带来了许多好处,包括显着缩短开发时间、提高准确性以及提高 Web 应用程序的整体质量。通过自动执行重复性任务,我们的解决方案使开发人员能够专注于项目更关键的方面,从而培养创造力和创新。
此外,Stochos 的预测功能可以实现更好的项目规划和资源管理,从而降低延误和成本超支的风险。客户受益于更快的上市时间、更高的满意度以及各自行业的竞争优势。