转载请注明作者和出处:http://blog.csdn.net/john_bh/
** CNN 论文及代码汇总,持续更新中~~**
1. Metrics
2. Paper List
2.1 Survey
- XXXXX
2.2 Papers
2024
-
PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution — CVPR 2024
一些大型的核卷积神经网络可以取得令人满意的性能和效率,然而,考虑到卷积的平方复杂度,按比例扩大 Kernels 会产生大量的参数,而扩散的参数会导致严重的优化问题。由于这些问题,目前的 cnn 以 stripe convolution 的形式扩展到51 × 51(即51 × 5 + 5 × 51),并随着kernels 大小的持续增长而开始饱和。在本文中,将深入研究这些关键问题,并探讨是否可以继续扩展内核以获得更多性能提升。鉴于人类的周边视觉的周边区域只有极少量的感光细胞,认为密集的参数对于周边相互作用来说并不是必需的。受此启发,寻求通过引入peripheral vision mechanism 来降低参数复杂度,同时保留密集计算以保持密集卷积的强大性能 , 提出了一种类似人类的 peripheral convolution ,通过参数共享有效地减少了密集网格卷积90%以上的