导行电磁波从纵向场分量求其他方向分量的矩阵表示

本文介绍了导行电磁波在均匀空间中的传播特性,通过分离变量法,详细解析了如何从纵向场分量出发,利用麦克斯韦方程组求解电场和磁场的其他方向分量,给出了矩阵表示形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导行电磁波从纵向场分量求解其他方向分量的矩阵表示

导行电磁波传播的特点

电磁波在均匀、线性、各向同性的空间中沿着zzz轴传播,可用分离变量法将时间轴、zzz轴与x,yx,yx,y轴分离,电磁波的形式可表示为:
E⃗=E⃗(x,y)e−γzejωtH⃗=H⃗(x,y)e−γzejωt \begin{align} \vec E&=\vec E(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \vec H&=\vec H(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \end{align} EH=E(x,y)eγzet=H(x,y)eγzet

纵向场分量的求解导行电磁波的电场和磁场

对于这种波的求解,可以先求出电场、磁场在zzz轴的分量,然后根据,然后再根据麦克斯韦方程组求出电磁场在x,yx,yx,y, 由导行电磁波的数学表达式(1), (2)可知,∂∂zHx=−γHx\frac{\partial}{\partial z}H_x=-\gamma H_xzHx=γHx, ∂∂zHy=−γHy\frac{\partial}{\partial z}H_y=-\gamma H_yzHy=γHy,∂∂zEx=−γEx\frac{\partial}{\partial z}E_x=-\gamma E_xzEx=γEx,∂∂zEy=−γEy\frac{\partial}{\partial z}E_y=-\gamma E_yzEy=γEy.

从纵向场分量求解其他方向电场和磁场分量及其矩阵表示

麦克斯韦方程组可表示如下:
∇×H⃗=∂D⃗∂t+J⃗∇×E⃗=−∂B⃗∂t∇⋅D⃗=ρ∇⋅B⃗=0 \begin{align} \nabla \times \vec H &= \frac{\partial \vec D}{\partial t}+\vec J\\ \nabla \times \vec E &= - \frac{\partial \vec B}{\partial t}\\ \nabla \cdotp \vec D &= \rho\\ \nabla \cdotp \vec B &= 0 \end{align} ×H×EDB=tD+J=tB=ρ=0
如果已知Hz,EzH_z, E_zHz,Ez并且知道导行电磁波的形式如公式(1)和(2)所示,并认为传播空间中不存在电荷与电流,J⃗=0,ρ=0\vec J=0, \rho=0J=0,ρ=0,方程式(3)-(4)可表示为:

∇×H⃗=[ijk∂∂x∂∂y∂∂zHxHyHz]=jωεE⃗∇×E⃗=[ijk∂∂x∂∂y∂∂zExEyEz]=−jωμH⃗ \begin{align} \nabla \times \vec H &=\begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ H_x &H_y&H_z \end{bmatrix} = j\omega \varepsilon \vec E\\ \nabla \times \vec E &= \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ E_x &E_y&E_z \end{bmatrix} =- j\omega \mu \vec H\\ \end{align} ×H×E=ixHxjyHykzHz=εE=ixExjyEykzEz=μH
将(7)式 xxx 分量展开得到(9),将(8)式 yyy 分量展开得到(10)
∂∂yHz+γHy=jωεEx∂∂xEz+γEx=jωμHy \begin{align} \frac{\partial}{\partial y}H_z+\gamma H_y &=j\omega \varepsilon E_x\\ \frac{\partial}{\partial x}E_z+\gamma E_x &=j\omega \mu H_y\\ \end{align} yHz+γHyxEz+γEx=εEx=μHy
根据(9)和(10),得到用Hz,EzH_z, E_zHz,Ez表示的Hy,ExH_y, E_xHy,Ex

[ExHy]=−1kc2[γjωμjωεγ][∂∂x00∂∂y][EzHz] \begin{align} \begin{bmatrix} E_x \\ H_y \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & j\omega\mu \\ j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [ExHy]=kc21[γεμγ][x00y][EzHz]

将(7)式 yyy 分量展开得到(12),将(8)式 xxx 分量展开得到(13)
−∂∂xHz−γHx=jωεEy∂∂yEz+γEx=jωμHx \begin{align} -\frac{\partial}{\partial x}H_z-\gamma H_x &=j\omega \varepsilon E_y\\ \frac{\partial}{\partial y}E_z+\gamma E_x &=j\omega \mu H_x\\ \end{align} xHzγHxyEz+γEx=εEy=μHx
根据(12)和(13),得到用Hz,EzH_z, E_zHz,Ez表示的Hx,EyH_x, E_yHx,Ey

[EyHx]=−1kc2[γ−jωμ−jωεγ][∂∂y00∂∂x][EzHz] \begin{align} \begin{bmatrix} E_y \\ H_x \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & -j\omega\mu \\ -j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial y} & 0 \\ 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [EyHx]=kc21[γεμγ][y00x][EzHz]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博士熊 - 北邮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值