导行电磁波从纵向场分量求解其他方向分量的矩阵表示
导行电磁波传播的特点
电磁波在均匀、线性、各向同性的空间中沿着zzz轴传播,可用分离变量法将时间轴、zzz轴与x,yx,yx,y轴分离,电磁波的形式可表示为:
E⃗=E⃗(x,y)e−γzejωtH⃗=H⃗(x,y)e−γzejωt
\begin{align}
\vec E&=\vec E(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\
\vec H&=\vec H(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\
\end{align}
EH=E(x,y)e−γzejωt=H(x,y)e−γzejωt
纵向场分量的求解导行电磁波的电场和磁场
对于这种波的求解,可以先求出电场、磁场在zzz轴的分量,然后根据,然后再根据麦克斯韦方程组求出电磁场在x,yx,yx,y, 由导行电磁波的数学表达式(1), (2)可知,∂∂zHx=−γHx\frac{\partial}{\partial z}H_x=-\gamma H_x∂z∂Hx=−γHx, ∂∂zHy=−γHy\frac{\partial}{\partial z}H_y=-\gamma H_y∂z∂Hy=−γHy,∂∂zEx=−γEx\frac{\partial}{\partial z}E_x=-\gamma E_x∂z∂Ex=−γEx,∂∂zEy=−γEy\frac{\partial}{\partial z}E_y=-\gamma E_y∂z∂Ey=−γEy.
从纵向场分量求解其他方向电场和磁场分量及其矩阵表示
麦克斯韦方程组可表示如下:
∇×H⃗=∂D⃗∂t+J⃗∇×E⃗=−∂B⃗∂t∇⋅D⃗=ρ∇⋅B⃗=0
\begin{align}
\nabla \times \vec H &= \frac{\partial \vec D}{\partial t}+\vec J\\
\nabla \times \vec E &= - \frac{\partial \vec B}{\partial t}\\
\nabla \cdotp \vec D &= \rho\\
\nabla \cdotp \vec B &= 0
\end{align}
∇×H∇×E∇⋅D∇⋅B=∂t∂D+J=−∂t∂B=ρ=0
如果已知Hz,EzH_z, E_zHz,Ez并且知道导行电磁波的形式如公式(1)和(2)所示,并认为传播空间中不存在电荷与电流,J⃗=0,ρ=0\vec J=0, \rho=0J=0,ρ=0,方程式(3)-(4)可表示为:
∇×H⃗=[ijk∂∂x∂∂y∂∂zHxHyHz]=jωεE⃗∇×E⃗=[ijk∂∂x∂∂y∂∂zExEyEz]=−jωμH⃗
\begin{align}
\nabla \times \vec H &=\begin{bmatrix}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\
H_x &H_y&H_z
\end{bmatrix} = j\omega \varepsilon \vec E\\
\nabla \times \vec E &= \begin{bmatrix}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\
E_x &E_y&E_z
\end{bmatrix} =- j\omega \mu \vec H\\
\end{align}
∇×H∇×E=i∂x∂Hxj∂y∂Hyk∂z∂Hz=jωεE=i∂x∂Exj∂y∂Eyk∂z∂Ez=−jωμH
将(7)式 xxx 分量展开得到(9),将(8)式 yyy 分量展开得到(10)
∂∂yHz+γHy=jωεEx∂∂xEz+γEx=jωμHy
\begin{align}
\frac{\partial}{\partial y}H_z+\gamma H_y &=j\omega \varepsilon E_x\\
\frac{\partial}{\partial x}E_z+\gamma E_x &=j\omega \mu H_y\\
\end{align}
∂y∂Hz+γHy∂x∂Ez+γEx=jωεEx=jωμHy
根据(9)和(10),得到用Hz,EzH_z, E_zHz,Ez表示的Hy,ExH_y, E_xHy,Ex:
[ExHy]=−1kc2[γjωμjωεγ][∂∂x00∂∂y][EzHz] \begin{align} \begin{bmatrix} E_x \\ H_y \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & j\omega\mu \\ j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [ExHy]=−kc21[γjωεjωμγ][∂x∂00∂y∂][EzHz]
将(7)式 yyy 分量展开得到(12),将(8)式 xxx 分量展开得到(13)
−∂∂xHz−γHx=jωεEy∂∂yEz+γEx=jωμHx
\begin{align}
-\frac{\partial}{\partial x}H_z-\gamma H_x &=j\omega \varepsilon E_y\\
\frac{\partial}{\partial y}E_z+\gamma E_x &=j\omega \mu H_x\\
\end{align}
−∂x∂Hz−γHx∂y∂Ez+γEx=jωεEy=jωμHx
根据(12)和(13),得到用Hz,EzH_z, E_zHz,Ez表示的Hx,EyH_x, E_yHx,Ey:
[EyHx]=−1kc2[γ−jωμ−jωεγ][∂∂y00∂∂x][EzHz] \begin{align} \begin{bmatrix} E_y \\ H_x \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & -j\omega\mu \\ -j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial y} & 0 \\ 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [EyHx]=−kc21[γ−jωε−jωμγ][∂y∂00∂x∂][EzHz]