python爬虫爬取淘宝天猫商品评论数据教程(附源码)

本文介绍了一种使用python爬虫抓取天猫商品评论的方法,详细讲解了从发现评论数据源到编写爬虫代码的过程,以及解决遇到的如编码问题、反爬策略等挑战,并提及后续可通过文本情感分析处理评论数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近,因为工作需要,需要获取天猫某一商品的全部评论数据。于是,写了一个python脚本,自动爬取所有评论。做个记录。

 

一、准备阶段

  1. 获取评论数据来源

天猫的评论数据一般会放在JS文件里,故我们只需要打开商品页,快捷键Fn+F12,选择NetWork,筛选JS文件,找到名称为“rate.tmall....”开头的文件。

 

复制JS文件的链接,在新的页面打开访问。

bingo!就是我们需要的评论数据。

 

二、python代码

  1. 导入需要的第三方库

2.生成链接列表

3.获取评论数据的函数

### 使用 Scrapy 爬取淘宝商品评论数据 为了使用 Python 的 Scrapy 框架爬取淘宝商品评论数据,需遵循一系列特定的操作流程。首先,创建一个新的 Scrapy 项目并定义目标 URL 和解析逻辑。 #### 创建 Scrapy 项目 初始化新的 Scrapy 项目可以通过命令行工具完成: ```bash scrapy startproject taobao_reviews ``` 这会建立一个名为 `taobao_reviews` 的目录结构,在其中包含所有必要的配置文件和模板[^2]。 #### 定义 Spider 类 在 Spiders 文件夹下新建 Python 脚本用于编写具体的抓取逻辑。对于淘宝评论而言,通常需要处理分页加载以及 AJAX 请求等问题。因此,Spider 需要能够模拟浏览器行为发送请求,并解析返回的数据。 ```python import scrapy from ..items import TaobaoReviewsItem class ReviewSpider(scrapy.Spider): name = 'review_spider' allowed_domains = ['item.taobao.com'] def __init__(self, product_id=None, *args, **kwargs): super().__init__(*args, **kwargs) self.start_urls = [ f'https://rate.tmall.com/list_detail_rate.htm?itemId={product_id}&currentPage=1' ] def parse(self, response): item = TaobaoReviewsItem() # 解析页面上的评论信息 reviews = response.css('.tm-rate-content') for review in reviews: content = review.xpath('./div[@class="tm-rate-fulltxt"]/text()').get().strip() date = review.css('.tm-rate-date::text').get() yield { 'content': content, 'date': date } next_page_url = response.css('a.ui-page-next::attr(href)').extract_first() if next_page_url is not None: absolute_next_page_url = response.urljoin(next_page_url) yield scrapy.Request(url=absolute_next_page_url, callback=self.parse) ``` 此代码片段展示了如何构建一个简单的 Spider 来提取每条评论的内容及其发表日期。注意这里假设评论是以 HTML 形式呈现;如果实际 API 返回 JSON 数据,则应相应调整解析方式[^3]。 #### 设置 Item Pipeline 为了让抓到的信息得以保存至本地或其他数据库中,还需要设置 Items 及 Pipelines。编辑 items.py 添加字段描述所需存储的数据项,并修改 settings.py 开启 pipeline 功能。 ```python # In items.py import scrapy class TaobaoReviewsItem(scrapy.Item): content = scrapy.Field() date = scrapy.Field() ``` 最后一步是在 pipelines.py 中实现具体存盘逻辑,比如将结果写入 CSV 或者连接 MySQL 存储等操作[^4]。 #### 运行爬虫程序 当一切准备就绪之后,就可以执行如下指令启动爬虫了: ```bash scrapy crawl review_spider -a product_id=<your_product_id> ``` 上述命令中的 `-a product_id=` 参数用来传递给 Spider 实例化时所需的参数值,即指定想要抓取哪个产品的 ID 编号。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大玩家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值