深度学习——卷积神经网络(CNN)简介

卷积神经网络(CNN)是深度学习中用于图像处理、视频分析等领域的核心网络结构。本文介绍了CNN的发展背景、卷积概念,包括卷积层、池化层、全连接层的作用,并探讨了常见的卷积神经网络模型,如LeNet、AlexNet、VGG net和ResNet。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络简介

前言

卷积神经网络(Convolutional Neural Networks,简称:CNN)是深度学习当中一个非常重要的神经网络结构。它更多的是用在图像图片处理,视频处理,音频处理以及自然语言处理等等。
早在上世纪80年代左右,卷积神经网络的概念就已经被提出来了。但其真正的崛起却是在21世纪之后,21世纪之后,随着深度学习理论的不断完善,同时,由于硬件性能的爆炸式提升,算力的不断增长等因素的促进,给卷积神经网络这种算法提供了大放异彩的空间。著名的AlphaGo,手机上的人脸识别,大多数都是采用卷积神经网络。因此可以说,卷积神经网络在如今的深度学习领域,有着举足轻重的作用。

在了解卷积神经网络之前,我们务必要知道:什么是神经网络(Neural Networks),关于这个,我们已经在深度学习简介的 第二部分有所介绍。这里就不赘述了。在了解了神经网络的基础上,我们再来探究:卷积神经网络又是什么呢?当中的“卷积”这个词,又意味着什么呢?

一.如何理解卷积

1.1什么是卷积

先说点题外话,那就是这个“卷积”。刨除深度学习领域,即使是在完全没有接触深度学习之前,有相当一部分大学生,都会在本科阶段学习过一个词:卷积函数。卷积函数是说,在R1上,f(x)与g(x)是可积的,那么二者的卷积就是:
h ( x ) = ∫ − ∞ + ∞ f ( x ) g ( x − γ ) d γ = ( f ∗ g ) ( x ) h(x) = \int_{-\infty}^{+\infty}f(x)g(x-\gamma)d\gamma=(f*g)(x) h(x)=+f(x)g(x

### 关于卷积神经网络深度学习名词解释 #### 卷积神经网络 (Convolutional Neural Network, CNN) 卷积神经网络是一种专门用于处理具有网格状拓扑数据的前馈神经网络,尤其适用于图像和视频识别等领域。其核心思想在于模拟生物视觉系统的机制,通过局部感知野、共享权重以及池化操作来减少参数数量并提高模型泛化能力[^1]。 #### 深度学习 (Deep Learning) 深度学习是机器学习的一个分支,主要研究如何构建多层的人工神经网络来进行特征提取和模式识别。相比于传统的浅层学习方法,深度学习能够自动从原始数据中学习复杂的层次化表示,从而显著提升了多个领域的性能表现,例如计算机视觉、自然语言处理等。 #### 权值 (Weights) 在网络结构中,权值代表连接两个节点之间的强度或者重要程度。对于卷积神经网络而言,权值通常以矩阵形式存在,即所谓的卷积核(Convolution Kernel),它们会在训练过程中被优化算法逐步调整至最佳状态以便更好地捕捉输入数据中的关键特性[^2]。 #### 卷积核 / 过滤器 (Kernel/Filter) 这是组成CNN基本单元之一的小型二维数组,在每次迭代期间滑动跨过整个输入体积执行逐元素乘法加总运算形成新的激活图(Activation Map)。随着反向传播过程持续进行,这些过滤器会逐渐适应特定类型的边缘检测或其他有用的空间信息抽取任务所需的最佳配置[^2]。 #### 图像预处理(Image Preprocessing) 为了使模型更加鲁棒且具备更好的推广效果,在正式送入任何一种基于深度学习框架下的分类器之前往往需要经历若干必要的前期准备工作阶段——这便是所谓‘图像预处理’环节的主要职责所在;具体措施可能涉及去除噪声干扰项(比如椒盐噪点)、增强对比度范围变化趋势(譬如伽马校正技术应用实例分析),还有几何变换类别的随机水平镜像翻转变形等等多样化手段组合运用场景探讨说明文档链接地址如下所示[^3]: ```python import cv2 from skimage import transform as tf def preprocess_image(image_path): img = cv2.imread(image_path) # 调整大小 resized_img = cv2.resize(img, dsize=(224, 224)) # 随机旋转 angle = np.random.uniform(-30, 30) rotated_img = tf.rotate(resized_img, angle) return rotated_img ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值