Pandas数据处理全解析:从基础结构到高级操作
1. Pandas DataFrames 基础
Pandas DataFrame 是一种带标签的二维数据结构,类似于 Google Sheets 或 Microsoft Excel 中的工作表,也类似于关系型数据库表。其各列可以是不同的数据类型。DataFrame 可以通过以下几种方式创建:
- 使用另一个 DataFrame。
- 使用 NumPy 数组或具有二维形状的数组组合。
- 从另一个 Pandas 数据结构 Series 创建。
- 从文件(如 CSV 文件)生成。
- 从一维结构的字典(如一维 NumPy 数组、列表、字典或 Pandas Series)创建。
以下是一个使用 CSV 文件创建 DataFrame 的示例代码:
from pandas.io.parsers import read_csv
df = read_csv("WHO_first9cols.csv")
print("Dataframe", df)
1.1 DataFrame 属性查询
可以通过以下代码查询 DataFrame 的一些属性:
# 查询 DataFrame 的形状
print("Shape", df.shape)
print("Length", len(df))
# 检查列标题和数据类型
print("Column Headers", df.columns)
print("Dat