
大模型
文章平均质量分 95
大模型技术内参:从原理到实战,掌握AI前沿核心
每周深度解析 Transformer、LLaMA、Gemini、GPT-4 等顶尖架构,揭秘底层原理与工程实践,助你成为大模型领域的技术专家或商业赢家!
架构进化论
多年来,先后在互联网企业担任首席架构师,主导过亿级用户系统设计、高并发分布式架构,以及大模型落地应用。作为技术负责人,我亲历了从单体架构到云原生、从传统机器学习到千亿参数大模型的演进,并成功将前沿技术转化为商业价值。如今,我专注于大模型工程化、云原生架构优化和AI驱动的系统设计,致力于帮助企业用最低成本实现技术突破。我拒绝水文,每周更新1-2篇深度优质长文,短文若干篇,内容涵盖,但不限于:实战经验、架构设计方法论、前沿论文解读、技术选型等。如果你对AI架构、大模型工程化、云原生技术感兴趣,欢迎关注我!技术人,既要仰望星空,更要脚踏实地,我们一起探索AI与架构。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
解构Llama的KV Cache:从自回归瓶颈到推理加速的革命
在大型语言模型(LLM)推理过程中,有一个看似矛盾的现象:当模型逐字生成文本时,它需要不断重复处理已经生成的文本。这就像每次说新单词时都要把之前说过的话全部复述一遍——这种低效性正是KV Cache技术要解决的核心问题。本文将深入剖析这项关键技术背后的设计哲学与工程实现。原创 2025-07-20 12:45:00 · 693 阅读 · 0 评论 -
MacBook Pro M4 Max vs. RTX 4090/5090笔记本:个人开发者如何选择大模型训练推理设备?
在人工智能技术迅猛发展的今天,大语言模型(LLM)已成为开发者探索的热点领域。对于个人开发者或学习者而言,选择合适的硬件设备来训练和推理大模型是一个关键决策。本文将全面分析 MacBook Pro M4 Max 与搭载 RTX 4090/5090 显卡的 Windows 笔记本在运行大模型时的表现,从性能、成本、生态兼容性、扩展性等多个维度进行对比,帮助读者做出最优选择。原创 2025-07-20 07:00:00 · 1306 阅读 · 0 评论 -
本地大模型部署工具全解析:LM Studio vs. Ollama 及最佳实践指南
工具定位的根本差异是选型决策的首要考量。经过深入分析,我们确认LM Studio本质上是一款面向终端用户的AI应用程序,其设计目标是为非技术背景用户提供最简单的大模型访问方式。而Ollama则定位为面向开发者的模型引擎,强调灵活性、自动化集成和生产环境稳定性。这种根本差异决定了它们在架构设计、功能取舍和用户体验上的所有具体区别。平台适配性的显著差异在实际部署中不容忽视。我们的评估显示,LM Studio在Apple Silicon Mac设备上表现最为出色,Metal加速优化使其推理速度领先同类工具。原创 2025-07-19 12:45:00 · 1323 阅读 · 0 评论 -
混合专家模型(MoE)的推理机制:从架构演进到效率革命
混合专家模型(Mixture of Experts, MoE)已成为当前大模型领域的重要架构范式,它通过“分而治之”的专家系统显著提升了模型推理效率。本文将系统剖析MoE模型的推理过程,揭示其高效推理的内在机制,分析传统架构的局限性,梳理技术演进路径,并通过生活化案例和代码示例帮助读者深入理解这一前沿技术。文章将从基础概念入手,逐步深入到现代MoE架构的创新设计,最终展望未来发展方向,为AI从业者提供全面的技术视角。原创 2025-07-19 07:00:00 · 809 阅读 · 0 评论 -
从Self-Attention到Cross-Attention:Llama架构的深度技术解析与演进路径
作为这一架构的核心创新,注意力机制经历了从Self-Attention到Cross-Attention的质变过程,这一演进不仅解决了实际应用中的关键瓶颈,更开创了多模态智能处理的新纪元。Meta的Llama系列模型作为这一技术路线的典型代表,其架构选择反映了当前大模型发展的核心诉求:在保持强大表征能力的同时,实现计算效率的质的飞跃。未来的智能系统将不再是简单的模式识别工具,而是具备真正理解与创造能力的认知伙伴,推动人类社会进入智能增强的新纪元。实际应用中90%以上的注意力权重对最终结果的贡献可以忽略不计。原创 2025-07-18 07:00:00 · 816 阅读 · 0 评论 -
Transformer位置编码技术:原理、设计与数学本质深度解析
本文深入剖析Transformer模型中的位置编码技术,从序列建模的根本挑战出发,系统分析正余弦位置编码的设计原理、数学特性及其在自注意力机制中的作用机制。文章不仅详细解读原始Transformer论文中的位置编码方案,还探讨了其优势局限以及后续改进方向,为理解Transformer架构的核心组件提供全面视角。原创 2025-07-17 07:00:00 · 742 阅读 · 0 评论 -
Transformer完整计算案例:从输入到输出的逐步详解
0.1, 0.2, 0.3, 0.4], # 第一个位置[0.5, 0.6, 0.7, 0.8] # 第二个位置输出层权重W_out = [[0.1, 0.2, 0.3], # 对应<pad>,cat,sits计算logits[...]] ≈ [Softmax概率[...]] ≈ [输入处理将"cat"和"sits"转换为词向量添加位置编码得到初始表示H_0编码器计算多头注意力计算(两个头)残差连接和层归一化前馈网络变换再次残差连接和归一化得到H_1输出预测假设解码器输出。原创 2025-07-17 12:45:00 · 601 阅读 · 0 评论 -
Transformer架构逐层深度解析:从输入到输出的完整计算过程
Transformer架构通过自注意力机制实现了强大的序列建模能力,其精心设计的各层组件协同工作,克服了传统RNN/CNN的局限性。理解每一层的数学细节对于模型调优和架构创新至关重要。随着研究的深入,Transformer仍在不断演进,但其核心思想将继续影响深度学习的发展方向。原创 2025-07-16 12:45:00 · 689 阅读 · 0 评论 -
突破Transformer极限:Megalodon架构如何实现无限上下文建模的革命
在当今大语言模型(LLM)领域,上下文长度已成为衡量模型能力的关键指标之一。),在处理长序列时面临巨大挑战。本文将深入剖析Meta提出的Megalodon架构——一种专为无限长上下文建模设计的革命性神经网络结构。我们将从技术演进背景、核心创新设计、实现细节到应用前景,全方位解读这一突破性技术,并通过代码示例和生活化案例帮助读者深入理解其工作原理。原创 2025-07-15 12:45:00 · 984 阅读 · 0 评论 -
从自动化工具到认知引擎:n8n架构设计的演进与创新实践
开发者可以使用JavaScript/TypeScript编写完全自定义的节点,如上文的天气节点示例。这些节点可以打包发布到社区,或作为私有扩展内部使用。原创 2025-07-13 07:30:00 · 1698 阅读 · 0 评论 -
Agent AI 8层架构重构:从基础设施到治理的全栈智能体设计
在人工智能领域,Agent AI(智能体人工智能)正经历着从单一功能模块向复杂自治系统的转变过程。早期的AI系统如专家系统(1980年代)仅能处理狭窄领域的问题,而现代Agent AI如AutoGPT、BabyAGI等已经能够自主规划、执行多步骤任务并持续优化自身行为。这种能力跃迁催生了对更精细、更系统化架构的需求,而本文将深入解析的8层架构正是为此设计的全面框架。传统AI系统架构面临几个核心挑战:1)功能单一,难以处理跨领域复杂任务;2)组件耦合度高,难以独立演进;3)缺乏统一的安全治理标准;原创 2025-07-14 12:45:00 · 881 阅读 · 0 评论 -
Agent AI 8层架构深度解析:从理论到实践的智能体系统设计
在人工智能领域,Agent AI(智能体人工智能)正经历着从简单的规则系统到复杂自主决策系统的演进过程。早期的聊天机器人如ELIZA(1966)仅能基于模式匹配进行简单对话,而现代Agent AI如AutoGPT、BabyAGI等已经能够自主规划、执行复杂任务并持续学习。这种演进催生了对系统化架构的需求,而8层架构正是为此设计的全面框架。传统AI系统面临几个核心问题:1)功能单一,难以处理复杂多步骤任务;2)缺乏持续学习和适应能力;3)各组件耦合度高,难以扩展和维护;4)缺乏明确的责任边界和协作机制。原创 2025-07-14 07:00:00 · 602 阅读 · 0 评论 -
MCP、Function Calling与Agent:构建AI协作生态的三层架构体系
原子能力执行层作用:将自然语言指令转换为结构化API调用特点:无状态、低延迟、紧耦合get_weather(location="北京")MCP:工具治理与编排层作用:标准化工具描述、发现与安全管控特点:动态发现、状态管理、协议统一示例:自动发现并调用最新注册的天气服务Agent:任务自治与协作层作用:理解用户意图、分解任务、协调资源特点:目标驱动、上下文感知、自主决策示例:规划完整旅行行程(航班+酒店+天气)原创 2025-07-10 07:00:00 · 708 阅读 · 0 评论 -
MCP vs Function Calling:重构AI工具交互范式的技术真相
本文系统性地分析了Model Context Protocol(MCP)与传统Function Calling的技术定位与适用边界,揭示了二者“”的本质关系。通过建立技术演进模型、架构对比矩阵和性能基准测试,我们证明MCP是对Function Calling生态的扩展而非颠覆。文章包含协议设计原理的深度解析、典型行业案例的量化对比、混合架构的代码实现,以及未来技术融合的前瞻预测。研究发现,MCP的核心价值在于标准化工具集成流程,而非取代底层调用机制;原创 2025-07-09 12:45:00 · 758 阅读 · 0 评论 -
A2A vs MCP:智能体通信协议的框架选择与最佳实践
本文系统性地分析了Agent-to-Agent(A2A)与Model Context Protocol(MCP)两大智能体通信协议的适用场景与选择策略。通过建立多维评估模型,我们揭示了协议选择背后的技术逻辑与商业考量。文章包含协议对比矩阵、决策树模型、典型行业案例以及混合部署方案,帮助架构师在复杂场景中做出最优选择。基于对200+企业案例的研究,我们总结出“三层九维”评估体系,并给出可落地的架构迁移路径。通过本文,技术决策者将掌握协议选择的系统方法论,避免常见陷阱,最大化通信协议的投资回报。原创 2025-07-09 07:00:00 · 1133 阅读 · 0 评论 -
A2A架构:多智能体协作的通信协议革命
A2A采用“客户端-服务端”的对称架构,任何智能体既可发起请求也可提供服务。Web标准基础:基于HTTP、SSE和JSON-RPC等广泛采用的标准能力导向:通过标准化描述实现动态发现任务中心:以任务为基本协作单元模态无关:支持文本、图像、视频等多元交互。原创 2025-07-08 12:45:00 · 1209 阅读 · 0 评论 -
MCP架构:AI时代的标准化上下文交互协议
Host:提供AI交互环境的应用程序,如Claude桌面版或AI驱动的IDEClient:在Host内运行,负责与MCP Server通信Server:封装特定功能,通过MCP协议对外提供服务这种架构类似于计算机的USB接口系统:Host相当于计算机主机Client相当于USB控制器Server相当于各种USB设备(键盘、鼠标、存储设备等)MCP协议相当于USB标准,确保不同厂商设备的兼容性。原创 2025-07-08 07:00:00 · 824 阅读 · 0 评论 -
MCP架构:模型上下文协议的革命性创新设计
本文深入解析Model Context Protocol(MCP)架构的创新设计,这是一种针对大模型上下文管理和交互的全新范式。我们将从大模型上下文处理的技术演进出发,系统分析MCP架构的核心设计理念、关键技术突破及实现机制。通过多维度解析,揭示MCP如何解决传统架构在上下文长度、信息保留和跨模型交互等方面的根本性挑战。文章包含详细的技术实现、生活化类比、代码示例和数学公式,最后探讨MCP架构对未来人工智能系统发展的深远影响。原创 2025-07-07 12:45:00 · 894 阅读 · 0 评论 -
MCP架构:大模型时代的分布式训练革命
本文深入探讨了MCP(Multi-Controller Parallel)架构的创新设计,这是一种针对大规模预训练模型的高效分布式训练框架。我们将从分布式训练的技术演进历程出发,详细分析MCP架构的设计原理、技术优势及实现细节。通过生活化类比、代码示例和数学公式的多维度解析,揭示MCP如何解决传统架构在扩展性、通信效率和资源利用率等方面的瓶颈问题。文章最后展望了MCP架构的未来发展方向及其在大模型时代的战略意义。原创 2025-07-07 07:30:00 · 1019 阅读 · 0 评论 -
MCP Server深度评估报告:效能差异、优化策略与未来演进路径
模型上下文协议(Model Context Protocol,MCP)是Anthropic于2024年11月推出的开放标准,旨在为大型语言模型(LLM)与外部工具和服务的交互提供统一接口。正如USB协议统一了外设接入标准,MCP正迅速成为AI应用连接数字生态的“通用总线”。截至2025年4月,MCP.so上已有超过8000个注册的MCP Server,涵盖数据处理、文件系统、API网关、聊天机器人、数据库等服务类别。性能差异显著。原创 2025-07-03 18:34:30 · 1460 阅读 · 0 评论 -
从微服务到智能服务:Spring Cloud Gateway向AI网关的演进之路
AI网关是专门为人工智能服务设计的API网关,它在传统网关功能基础上,增加了对AI服务特有需求的支持。想象一下AI网关就像是一个智能交通指挥中心,不仅要管理普通车辆(传统微服务)的通行,还要为特殊车辆(AI服务)开辟专用通道,并根据实时路况动态调整路线。大流量处理:AI服务往往需要处理大量输入数据,如图像、语音等长连接管理:支持流式响应和长轮询等通信模式智能路由:基于内容、模型版本和负载情况的动态路由特殊协议支持:如gRPC、WebSocket等AI常用协议模型管理:多版本模型部署和AB测试支持。原创 2025-07-01 12:45:00 · 836 阅读 · 0 评论 -
Mem0:AI智能体的记忆革命——从临时对话到持久化认知伙伴
本文全面剖析了Mem0这一突破性的AI记忆架构体系,揭示了传统大模型“健忘症”的根源,系统梳理了AI记忆技术的演进路径,深入解析了Mem0的核心架构与MCP协议设计,并通过丰富案例展示了其跨领域的应用价值。作为大模型架构师的专业分析,本文不仅对比了Mem0与传统RAG等技术的差异,还前瞻性地探讨了AI记忆技术的未来发展方向与潜在挑战,为从业者提供了全面的技术视野和实践参考。原创 2025-06-30 12:45:00 · 2199 阅读 · 0 评论 -
金字塔场景解析网络(PSPNet)深度解析:大模型时代的多尺度语义分割利器
在计算机视觉领域,语义分割是一项基础而关键的任务,它要求模型为图像中的每个像素分配一个类别标签,从而实现对场景的完整理解。随着自动驾驶、增强现实和智能监控等应用的快速发展,对复杂场景的精确解析需求日益增长。原创 2025-06-30 08:30:00 · 1792 阅读 · 0 评论 -
Redis 8.0向量库 vs 传统向量数据库:大模型知识库开发选型全指南
在大模型知识库开发领域,向量数据库的选择直接影响系统的性能、扩展性和开发效率。随着Redis 8.0推出Vector Set数据结构并增强向量搜索能力,开发者面临新的选择困境:是采用传统专用向量数据库(如Milvus、Pinecone),还是拥抱Redis这一“新晋”向量存储解决方案?本文将从技术架构、性能指标、成本效益和典型场景四个维度,为您提供一套完整的决策框架,帮助您在大模型知识库开发中做出最优选择。原创 2025-06-22 12:45:00 · 856 阅读 · 0 评论 -
大模型中的辅助损失:原理、应用与前沿实践
辅助损失是指在深度学习模型训练过程中,除了主损失函数外额外引入的辅助性监督信号。其核心思想源于认知科学中的“多任务学习”理论——人类在学习复杂技能时,往往通过分解子任务并同时训练相关能力来实现整体提升。梯度多样性:为主干网络提供多方向的梯度信号,缓解梯度消失/爆炸中间监督:对深层网络的中间层施加约束,避免“特征退化”均衡优化:调节模型不同组件的学习强度,防止部分模块“垄断”训练资源。原创 2025-06-29 12:45:00 · 560 阅读 · 0 评论 -
大模型专家激活机制深度解析:从原理到实践
架构选择对于高吞吐量、多设备场景,MoE架构是理想选择在显存有限的低吞吐量场景中,稠密模型可能更合适考虑LLaMA的改进架构(Pre-LN、RMSNorm、SwiGLU、RoPE)以获得更稳定的专家路由专家配置专家数量在256-512之间可能达到收益递减点Top-k通常选择1-2个专家平衡计算与性能使用噪声门控和负载均衡损失防止专家退化训练策略采用渐进式训练,初期使用较小k值,后期逐步增加结合指令微调帮助专家专业化监控各专家使用频率,避免资源浪费部署优化实施专家分片充分利用分布式资源。原创 2025-06-28 12:45:00 · 1232 阅读 · 0 评论 -
多模态与混合专家微调革命:MoRA、MoLoRA与PEFT技术的深度对比与实践指南
本文系统性地剖析了当前大模型参数高效微调(PEFT)领域最具代表性的三种技术范式:通用参数高效微调框架PEFT、多模态感知的MoRA(Modality-aware Rank Adaptation)以及混合专家版MoLoRA(Mixture of LoRA Experts)。通过解构其数学原理、架构设计和实现机制,揭示了三者在和等方面的本质差异。文章通过医疗诊断、跨语言翻译等场景案例阐释技术选型逻辑,为AI架构师提供从理论到实践的全方位指导。原创 2025-06-29 08:30:00 · 1649 阅读 · 0 评论 -
解剖MoR1E:认知自适应混合专家模型的底层原理与内核设计
本文从数学基础、架构设计和计算原理三个层面深入剖析MoR1E(Intuition-aware Mixture-of-Rank-1-Experts)模型的内核机制。通过揭示其背后的和,展现这一参数高效微调技术的精妙设计。文章包含矩阵分析的理论推导、训练动力学的数学描述、核心算法的Python实现,以及通过生活化案例的技术类比,为研究者提供深入理解MoR1E的完整框架。原创 2025-06-28 08:30:00 · 1097 阅读 · 0 评论 -
参数高效微调三剑客:LoRA、MoLoRA与MoR1E的深度比较与应用指南
在大型语言模型(LLM)时代,全参数微调(Full Fine-tuning)面临:微调百亿参数模型需昂贵GPU集群:每个下游任务需保存完整模型副本:微调可能损害模型原有通用能力:想象一位精通多国语言的翻译专家(预训练模型)。传统微调如同让他完全转行(如从翻译转为医学诊断),不仅需要大量培训(计算资源),还可能丢失原有语言技能(灾难性遗忘)。而PEFT方法则像配备专业术语手册(适配器),在保持核心能力的同时快速适应新领域。原创 2025-06-27 12:45:00 · 837 阅读 · 0 评论 -
认知自适应混合专家模型:MoR1E的创新与演进
微调一个百亿参数模型需要昂贵的GPU集群:每个下游任务都需要保存完整的模型副本:微调可能损害模型原有的通用能力:想象一位精通多国语言的翻译专家(预训练模型)。传统微调就像让他完全改变专业领域(如从翻译转为医学诊断),这不仅需要大量培训(计算资源),还可能让他忘记原有语言技能(灾难性遗忘)。而PEFT方法则像给他配备专业术语手册(适配器),让他在保持核心能力的同时快速适应新领域。原创 2025-06-27 08:30:00 · 630 阅读 · 0 评论 -
混合专家模型专家选择机制深度解析:粒度选择如何重塑模型性能与效率
混合专家模型(MoE)的核心思想是“分而治之”,而专家选择粒度则是这一思想的直接体现。如同医院分诊系统,选择何种分诊粒度(单个症状、完整病历或人群特征)将极大影响医疗效率和质量。在MoE中,token-level、sentence-level和batch-level三种选择策略形成了精确度与效率的“不可能三角”。原创 2025-06-26 12:45:00 · 517 阅读 · 1 评论 -
认知自适应混合专家模型:从理论到实践的智能演进之路
固定k值选择导致上下文连贯性丧失:简单样本过度消耗计算资源:无法动态响应输入复杂度变化:量化输入语义密度:实时调整专家参与度:维持对话一致性。原创 2025-06-26 08:30:00 · 781 阅读 · 0 评论 -
大模型知识库开发中的向量数据库选型指南:从理论到实践
向量数据库是一种专门用于高效存储、索引和查询高维向量数据的数据库系统。与传统数据库不同,向量数据库的核心能力在于能够快速找到与查询向量最相似的向量集合,这种能力基于近似最近邻搜索(ANN)算法实现。在大模型知识库开发中,向量数据库扮演着“记忆系统”的角色,通过将非结构化数据(如文本、图像)转换为向量表示,并建立高效的检索机制,为大型语言模型提供相关上下文信息。向量数据库的核心价值体现在三个维度:首先,它解决了语义搜索的挑战,传统关键词搜索无法理解查询意图,而向量搜索能捕捉深层次的语义相似性;其次,作为。原创 2025-06-22 06:41:47 · 689 阅读 · 0 评论 -
混合专家模型中的专家选择机制:从理论到实践的全面探索
最新研究表明,固定粒度选择可能不是最优解。原创 2025-06-25 12:15:02 · 128 阅读 · 0 评论 -
混合专家模型中的专家选择机制:Token-Level、Sentence-Level还是Batch-Level?
混合专家模型通过实现模型容量与计算效率的平衡,其核心挑战在于。选择粒度直接影响模型性能和计算开销。原创 2025-06-25 08:30:00 · 278 阅读 · 0 评论 -
Java大模型开发框架深度对决:Spring AI与LangChain4j的技术选型指南
Spring AI和LangChain4j虽然都服务于Java生态中的大模型开发,但设计理念和技术路线有着显著差异。理解它们的核心定位是技术选型的第一步。Spring AI约定优于配置企业级支持和无缝集成。Spring AI旨在为Java开发者提供简单易用的AI开发体验,特别适合已有Spring技术栈的企业快速引入AI能力。其核心优势在于:与Spring Boot深度集成,自动配置和依赖注入统一的抽象接口(ChatClient、EmbeddingClient等)企业级特性:安全、事务、监控等。原创 2025-06-23 12:45:00 · 530 阅读 · 0 评论 -
大模型开发框架深度对比:Spring AI、LangChain、LangGraph与LlamaIndex的技术选型指南
在深入比较之前,我们首先需要明确各框架的基本定位和设计哲学,这是理解其适用场景的基础。四种框架虽然都服务于大模型应用开发,但各自有着不同的侧重点和技术路线。Spring AI是Spring生态系统中的新成员,专为Java开发者设计,旨在将大模型能力无缝集成到企业级Java应用中。作为Spring官方推出的框架,它继承了Spring生态系统的诸多优势,如依赖注入、自动配置和与Spring Boot的深度集成。原创 2025-06-23 08:30:00 · 1035 阅读 · 0 评论 -
为什么Llama选择RMSNorm:LayerNorm的进化与替代逻辑的深度解析
通过分析LayerNorm的局限性、RMSNorm的优势,结合数学原理、代码实现和生活化案例,揭示了这一替代背后的深层原因。研究表明,RMSNorm在保持性能的同时显著降低了计算复杂度,是大型语言模型效率优化的关键创新。原创 2025-06-19 12:45:00 · 1687 阅读 · 0 评论 -
字节FlowGram:AI时代可视化工作流的新范式
FlowGram是字节跳动开发并开源的一款基于节点的可视化流程搭建引擎,它创新性地融合了图神经网络与多模态交互技术,构建了支持动态拓扑重构的可视化流程引擎。作为字节内部“扣子”(Coze)工作流和飞书低代码平台的核心引擎,FlowGram已在30多个字节内部项目中得到验证。传统的工作流构建往往依赖于大量的编码和配置,既耗时又容易出错。而FlowGram通过可视化节点编辑的方式,使非技术用户能够以直观的节点连接方式,完成包含条件分支、循环迭代等复杂逻辑的流程编排。原创 2025-06-14 12:29:08 · 1546 阅读 · 0 评论 -
深度解读lmarena.ai排行榜:大模型竞技场的新标杆与未来趋势
在人工智能领域日新月异的今天,大型语言模型(LLM)的评估与比较已成为研究者和开发者关注的焦点。lmarena.ai(前身为lmsys.org)推出的Prompt-to-leaderboard (P2L)功能代表了这一领域的最新进展,它通过创新的评估方式为不同应用场景下的模型选择提供了科学依据。本文将全面剖析lmarena.ai排行榜的技术原理、评估方法、当前模型格局及其行业影响,帮助读者理解这一平台如何重塑我们对大模型能力的认知。原创 2025-06-17 08:30:00 · 1049 阅读 · 0 评论