第1天:理解深度学习的基本概念
目标: 理解深度学习的基本概念及其与传统机器学习的区别,为后续学习打下坚实基础。
1.1 深度学习的定义与背景
深度学习是人工智能(AI)和机器学习(ML)中的一个重要分支,其核心是利用多层神经网络进行数据分析和模式识别。深度学习通过模拟人脑的神经元连接来处理复杂的非线性问题,使得机器能够从大量数据中自动学习特征和模式。
学习资源:
- 《Deep Learning》 by Ian Goodfellow, Yoshua Bengio, and Aaron Courville(第1章)
- YouTube 上的深度学习介绍视频(如 Andrew Ng 的课程)
1.2 机器学习与深度学习的区别
深度学习是机器学习的一种方法,但两者之间有显著的区别:
- 特征提取: 传统的机器学习方法依赖人工设计的特征,而深度学习则自动从数据中学习特征。
- 模型结构: 传统机器学习通常使用浅层模型,如逻辑回归、支持向量机等,而深度学习使用多层神经网络,能够处理更复杂的关系。
- 性能: 随着数据量的增加,深度学习模型的表现通常会优于传统机器学习模型,特别是在图像处理、语音识别和自然语言处理等领域。
学习资源:
- 文章:《A Short Introduction to Deep Learning》 by Yann LeCun
- 课程:Coursera 上的《Machine Learning》 by Andrew Ng
1.3 神经网络的基础概念
神经网络是深度学习的核心,理解其基本构造和工作原理是学习深度学习的第一步。
- 神经元: 神经网络的基本单元类