Cursor安裝、使用與模型設置

1. 下載

首先先到這個網站https://www.cursor.com/,並點及右上角的下載,即可下載Cursor。

在这里插入图片描述

2. 安裝

找到剛剛下載完的檔案,雙擊安裝應該會出現下方的畫面。

在这里插入图片描述

  • Keyboard : 習慣的鍵盤方式,有VSCode、vim…可以選擇。
  • Language for AI : AI在回答時會幫你翻譯成該語言,建議輸入英文,如繁體中文請輸入traditional chinese
  • Codebase-wide : 是否讓Cursor將你的程式做embedding並放入RAG,這麼做的好處是可以做向量的查找,並在未來如果你需要編輯程式或是讓AI做編寫或改寫時,AI可以有內容可以參考,輔助AI針對你的整篇程式進行撰寫。
  • Add to Command Line : 建議安裝右邊的install cursor,這樣可以讓CMD能夠直接呼叫Cursor。

3. 繼承VSCode的擴充

如果先前有用過VSCode並安裝過擴充套件,如Jupyter Notebook等,可以直接複製過來,無須一個一個重新安裝,按Use Extensions可以複製過來。

在这里插入图片描述

如果你先前在VSCode安裝過continue這邊他會問你要繼續用continue還是用Cursor的AI擴充,建議用Cursor的,但Cursor的Autocomplete會需要付費會員,可以到淘寶找官方代購。

在这里插入图片描述

要不要將使用數據分享給設計者,就看人。
在这里插入图片描述

4. 登入

使用會需要登入,可以辦一個帳號,新帳號會送500則免費的request。

在这里插入图片描述
在这里插入图片描述

Cursor環境設置

1. IDE顏色風格設定

剛進去你可能會覺得顏色很奇怪,這裡教你如何改變配色,點擊右上角的齒輪或是按下Ctrl + Shift + J
在这里插入图片描述

Editor中點擊open editor settings
在这里插入图片描述

並在WorkbenchAppearance中找到Color Theme,找一個喜歡的顏色使用。
在这里插入图片描述

2. 設置Anaconda中Cursor路徑

如果要設定Anaconda的命令,使Anaconda可以使用Cursor命令叫出Cursor,方便切python換環境,首先你需要到你的Anaconda的路徑,可能是C:\Users\YourUsername\anaconda3,並且找到Script資料夾。
在这里插入图片描述

找到activate.bat
在这里插入图片描述

並且在最後添加set PATH=%PATH%;C:\Path\To\Cursor,記得C:\Path\To\Cursor要改成你Cursor的位置,如C:\Users\julia\AppData\Local\Programs\cursor

在这里插入图片描述

使用模型(Stima API)

1. 設置API Key

體驗Key可以參考這篇文章

最後的環節了,Cursor會需要設置模型,這裡是使用Stima API來做為模型供應商,這裡就教大家如何把Stima API串到Curosr中。

先到剛剛設置顏色風格設定的地方,選擇【Models】
在这里插入图片描述

先不要管模型名稱,先到下方【OpenAI API Key】,輸入你的API Key,並點開【Override OpenAI Base URL】,輸入https://api.stima.tech/v1,並點選右上角的Verify,若沒有出現錯誤就代表設置成功。記住URL必須包含/v1。
在这里插入图片描述

因為這是OpenAI base的API因此即使使用其他如Claude與Gemini的模型也無須額外設定API key,在步驟二的設置模型設定模型名稱即可。

在这里插入图片描述

2. 設置模型

請先參考適配模型,並點及下方【Add model】,之後輸入模型名稱,注意這裡必須與我們提供的模型呼叫別名相同,不然無法使用,好比說想使用Gemini 1.5 Pro就輸入gemini-1.5-pro-latest,想使用GPT-4 Turbo就輸入gpt-4-turbo,想使用Claude 3.5 Sonnet就輸入cow-3-5-sonnet-20240620,這裡要注意Cursor會自動偵測Claude開頭的模型並統一使用Anthropic的官方API,因此我們才替換成cow-3-5-sonnet-20240620
在这里插入图片描述

接下來去程式內應該就會看到剛剛新增的模型了,點擊即可使用。

在这里插入图片描述

### 如何在 Cursor安装和配置本地机器学习模型 要实现这一目标,可以按照以下方式操作: #### 1. 启用必要的功能 为了能够在 Cursor 设置中启用对本地模型的支持,需先确认 Composer 功能已开启。这可以通过导航至 `File > Preferences > Cursor Settings > Features` 并勾选 `Enable Composer` 来完成[^1]。 #### 2. 配置环境支持 对于本地机器学习模型的运行,通常需要依赖特定的框架(如 TensorFlow 或 PyTorch)。因此,在 Cursor 环境下应确保已经正确安装并配置好所需的库版本。例如,通过 Python 脚本安装所需依赖项: ```bash pip install torch torchvision transformers ``` #### 3. 加载本地模型 加载本地存储的预训练模型时,可利用 Hugging Face Transformers 库或其他类似的工具包。以下是基于 Transformer 的一个简单示例代码片段: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification model_path = "./local_model_directory" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) predictions = outputs.logits.argmax(dim=-1).item() return predictions ``` 上述脚本展示了如何从指定路径加载模型以及定义预测函数[^4]。 #### 4. 测试优化性能 当遇到硬件资源受限的情况(如同引用提到的朋友所面临的问题),可能需要调整批量大小或者采用混合精度训练技术来减少显存消耗[^3]。此外还可以考虑量化压缩等方式进一步提升效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值