
论文阅读
文章平均质量分 97
cvpr,eccv,iccv,usenix
绝望的少女
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文阅读《Fine-Grained Face Swapping via Regional GAN Inversion》
先总述贡献:提出一个新颖的高保真换脸范式(paradigm)能可信地(faithfully)保留所需的(desired)微小(subtle)几何和纹理细节。这个范式是什么?E4S。来源:从细粒度人脸编辑的角度重新思考换脸,editting for swapping。根据这个范式,提出基于人脸组件(facial components)的形状和纹理显示解耦的换脸框架。E4S有什么用?1)既能全局换脸,也能局部换脸;能由用户控制交换部分的数量。原创 2023-09-11 14:15:24 · 1700 阅读 · 0 评论 -
论文阅读《StyleIPSB: Identity-Preserving Semantic Basis of StyleGAN for High Fidelity Face Swapping》
PS:什么是语义基?“语义基础”(Semantic Basis)是指一组特征向量,表征了数据(例如图像)中的语义信息。在StyleGAN和其他生成对抗网络中,语义基础通常用于生成图像的控制。通过调整生成模型的语义基础系数,可以实现对生成图像的样式和特征的控制,例如改变生成图像的面部表情、姿势和视角等。原创 2023-07-24 16:40:06 · 1407 阅读 · 0 评论 -
论文阅读《Attribute-preserving Face Dataset Anonymization via Latent Code Optimization》
主要贡献:显示提出保留匿名化人脸数据集的原始人脸属性这一任务,并定量衡量了属性保留的程度。研究意义:匿名化和面部属性保留;一些预训练模型的用途:比如e4e可以获得真实人脸在stylegan中的latent code;FaRL:提取图像语义特征;定量衡量面部属性保留程度的方法。个人觉得这篇文章写得有点草率,很多槽点,有些地方感觉在水字数,有个图特别长,感觉在占篇幅,贡献不明显、实验也不是很充分,参考意见不大。原创 2023-07-21 17:37:14 · 1191 阅读 · 0 评论 -
反人脸识别综述(更新中)
论文:Threat of Adversarial Attacks on Face Recognition: A Comprehensive Survey面部识别(FR)模型易受到不同类型的攻击:1、物理攻击,在图像被捕获前修改面部的物理外观,如presentation attacks(又称spoofing attacks);2、数字攻击,对捕获的面部图像实现修改,如对抗性攻击和变形攻击。对抗性攻击(adversarial attacks)针对深度神经网络(DNNs),特别是卷积神经网络(CNNs),原创 2020-11-20 16:48:42 · 3246 阅读 · 0 评论