字节跳动2月中旬算法实习生面试题分享

本文分享了字节跳动算法实习生面试中的问题,涉及LSTM的基本原理,如输入门、遗忘门和输出门,以及与GRU的区别。Transformer的解释包括其多头自注意力机制和残差连接的重要性,阐述了多头注意力如何增强模型的性能,并提及Transformer在CV中类似ResNet的残差思想。同时,提到了进大厂刷题的重要性,并提供了相关面试题目的学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题1:LSTM原理

LSTM是循环神经网络RNN的变种,包含三个门,分别是输入门,遗忘门和输出门。

LSTM 与 GRU区别

(1)LSTM和GRU的性能在很多任务上不分伯仲;

(2)GRU参数更少,因此更容易收敛,但是在大数据集的情况下,LSTM性能表现更好;

(3)GRU 只有两个门(update和reset),LSTM 有三个门(forget,input,output),GRU 直接将hidden state 传给下一个单元,而 LSTM 用memory cell 把hidden state 包装起来。

问题2:Transformer的原理

Transformer本身是一个典型的encoder-decoder模型,Encoder端和Decoder端均有6个Block,Encoder端的Block包括两个模块,多头self-attention模块以及一个前馈神经网络模块;Decoder端的Block包括三个模块,多头self-attention模块,多头Encoder-Decoder attention交互模块,以及一个前馈神经网络模块;需要注意:Encoder端和Decoder端中的每个模块都有残差层和Layer Normalization层。

问题3:Transformer的计算公式,K,Q,V怎么算

Q、K、V分别是输入X线性变换得到的。

问题4:Transformer为什么要用多头

多次attention综合的结果至少能够起到增强模型的作用,也可以类比CNN中同时使用多个卷积核的作用,直观上讲,多头的注意力有助于网络捕捉到更丰富的特征/信息。

问题5:Transformer里的残差

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值