17、求职者数据集的实验结果分析

求职者数据集的实验结果分析

1. 数据集描述

在本次研究中,我们使用了一个包含500个过去求职申请者的数据集,其中250个样本用于训练,另外250个样本用于测试。与以往的数据集不同,这个数据集的特点在于其结果类别并非二元,而是分为四个等级:不可接受、最低要求、合格和优秀。这样的多类别分类任务增加了实验的复杂性,同时也提供了更丰富的应用场景。

类别 描述
不可接受 表现最差
最低要求 满足基本要求
合格 达到一般标准
优秀 表现出色

为了更好地理解数据集的特征,我们将数据集中的变量分为定量变量和名义变量。例如,“州”、“学位”和“专业”属于名义变量,这些变量本身并不携带特定的信息内容,但它们可以帮助我们了解求职者的背景信息。

2. 数据预处理

在进行模型训练之前,我们需要对数据进行预处理。具体步骤如下:

  1. 分类变量编码 :将名义变量转换为数值形式,以便模型能够处理。例如,“州”、“学位”和“专业”可以通过独热编码(One-Hot Encoding)进行转换。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值