求职者数据集的实验结果分析
1. 数据集描述
在本次研究中,我们使用了一个包含500个过去求职申请者的数据集,其中250个样本用于训练,另外250个样本用于测试。与以往的数据集不同,这个数据集的特点在于其结果类别并非二元,而是分为四个等级:不可接受、最低要求、合格和优秀。这样的多类别分类任务增加了实验的复杂性,同时也提供了更丰富的应用场景。
类别 | 描述 |
---|---|
不可接受 | 表现最差 |
最低要求 | 满足基本要求 |
合格 | 达到一般标准 |
优秀 | 表现出色 |
为了更好地理解数据集的特征,我们将数据集中的变量分为定量变量和名义变量。例如,“州”、“学位”和“专业”属于名义变量,这些变量本身并不携带特定的信息内容,但它们可以帮助我们了解求职者的背景信息。
2. 数据预处理
在进行模型训练之前,我们需要对数据进行预处理。具体步骤如下:
- 分类变量编码 :将名义变量转换为数值形式,以便模型能够处理。例如,“州”、“学位”和“专业”可以通过独热编码(One-Hot Encoding)进行转换。