一文读懂 delete和delete[ ]

本文探讨了C++中delete与delete[]的区别及其在不同场景下的应用。通过具体实例展示了对于基本类型和类类型的内存释放操作,强调了类类型内存释放时析构函数的作用及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作用
delete 		释放new分配的单个对象指针指向的内存
delete[] 	释放new分配的对象数组指针指向的内存
内存管理中:
1. 不论申请一块多大的内存,头尾都会有对应的大小标注。
2. 如果是普通变量类型,直接释放掉(还给操作系统)头尾标记的内存块大小即可。
3. 但是如果是类的话,还得看类中的数据类型
	a. 如果只有普通类型,可能没有影响
	b. 有指针等,像套接字,文件描述符,线程等
		i. 最明显的就是端口号不被释放,一直被占用,无法通信或者上网
		ii. 不能修改这个文件,甚至不能读这个文件,除非开机
		iii. 不被释放,这它总在后台运行,浪费内存和CPU资源
4. 如果是类的话,系统正常调用析构函数,但是只有一次,Debug模式下,会弹出析构的类型不匹配,也就是对应类的个数和第一个类的地址不匹配。虽然编译器的纠错功能勉强能调用一次,但比起未释放的资源数量(9个),这还是差远了。
第一种情况
int *p = new int[10];
delete p;        //方式1
delete [] p;     //方式2

在这里插入图片描述

这种情况下释放效果相同
第二种情况
class A
{
public:
	int m;
	~A()
	{}
};
A* ptr = new A[1024];
delete ptr;       //delete[] ptr;
return 0;

在这里插入图片描述

在这里插入图片描述

出现了问题。
### Transformers框架的原理 Transformers框架的核心基于Transformer架构,这是一种由Vaswani等人于2017年提出的神经网络模型[^4]。该架构主要分为两个部分:Encoder(编码器)Decoder(解码器)。然而,在实际应用中,某些变体可能仅使用其中一个部分。 #### 输入表示 对于像BERT这样的模型,其输入是由三种嵌入向量相加构成的:Token Embeddings、Positional Embeddings以及Segment Embeddings[^1]。这种组合允许模型不仅学习单词的意义及其位置关系,还能区分不同句子片段间的差异。 #### 架构组成 - **自注意力层**:这是Transformer的关键创新之一,它让模型可以关注到输入序列的不同部分,从而捕捉更丰富的语义信息[^3]。 - **前馈神经网络**:应用于每一个位置上的独立转换操作,增加了表达能力。 - **归一化与残差连接**:通过加入这些技术来改善深层结构的学习效果并防止梯度消失问题的发生[^3]。 ### 使用教程 要开始使用Transformers库来进行自然语言处理任务,可以从安装Hugging Face提供的`transformers`包入手: ```bash pip install transformers ``` 加载预训练好的模型非常简便,比如下面是如何加载BERT用于分词的例子: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") inputs = tokenizer("Hello world!", return_tensors="tf") outputs = model(inputs) print(outputs.last_hidden_state) ``` 这段代码展示了如何初始化一个BERT tokenizer 对应的TF (TensorFlow) 版本的 BERT 模型,并对一句话进行了编码得到隐藏状态作为输出。 ### 实战案例 - 计算词语相似度 如果想探索词汇间的关系,则可以通过Word Embedding实现这一点。这里给出一段简单的Python脚本来展示这一过程[^5]: ```python from gensim.models import KeyedVectors # 加载Google News pre-trained vectors word_vectors = KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin', binary=True) similar_words = word_vectors.most_similar('king', topn=5) for w,score in similar_words: print(f"{w}: {score}") ``` 此示例说明了如何利用预先训练好的谷歌新闻数据集中的词向量找到最接近给定单词的概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值