【mmdetection】小trick试验结果

博客以faster_rcnn_r50_fpn_1x_coco(frrf)为基准,对比了不同Trick组合下模型的性能。包括frrf、frrf+fp16、frrf+fp16+softnms、frrf+fp16+GIOULoss、frrf+fp16+GIOULoss+softnms,从mAP、模型大小、训练时间等方面进行了分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       

 基准(faster_rcnn_r50_fpn_1x_coco简称frrf)

  config                                                                      mAP(最好)            模型大小                     publish_model           cal_train_time (s/iter)

   1.frrf                                                                            0.9346              315.32MB                   158.23MB                     0.1298

  2.frrf+fp16                                                                    0.9301              236.47MB                    79.38MB                      0.0947

  3.frrf+fp16+softnms                                                     0.93526            236.47MB                    79.38MB                      0.0973

  4.frrf+fp16+GIOULoss                                                 0.9367             236.47MB                    79.38MB                      0.1076

  5.frrf+fp16+GIOULoss+softnms                                  0.9319             236.47MB                    79.38MB                      0.1031

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值