TensorFlow程序-MNIST数字识别

本文介绍了一个基于TensorFlow的MNIST手写数字识别神经网络实现,包括模型定义、训练流程及评估方法。该模型采用两层全连接神经网络结构,通过反向传播算法优化参数,并利用滑动平均值提高模型精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该程序包括三个部分,第一个是mnist_inference.py,在该程序中定义了前向传播过程和神经网络中的参数。第二个是mnist_train.py,它定义了神经网络的训练过程,并且将模型持久化,保存的是训练完成后的最终模型;第三个是mnist_eval.py,它定义了测试过程,在该程序中用的是训练完成后的最终模型,对验证数据和测试数据进行测试。

mnist_inference.py中程序如下:

import tensorflow as tf

#定义神经网络结构的相关参数
INPUT_NODE=784
OUTPUT_NODE=10
LAYER1_NODE=500

#通过tf.get_variable函数来获取变量。在训练神经网络时会创建这些变量;在测试时会通过保存的模型加载这些变量的取值。而且更加方便的是
#因为可以在变量加载时将滑动平均变量重命名,所以可以直接通过同样的名字同样的名字在训练时使用变量自身,而在测试时使用变量的滑动平均
#值。在这个函数中也会将变量的正则化损失加入损失集合。
def get_weight_variable(shape,regularizer):
	weights=tf.get_variable("weights",shape,initializer=tf.truncated_normal_initializer(stddev=0.1))
	#当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里使用了add_to_collection函数将一个张量加入一个
	#集合,而这个集合的名称为losses。这是自定义的集合,不在Tensorflow自动管理的集合列表中。
	if regularizer !=None:
		tf.add_to_collection('losses',regularizer(weights))
	return weights
	
#定义神经网络的前向传播过程
def inference(input_tensor,regularizer):
	#声明第一层神经网络的变量并完成前向传播过程
	with tf.variable_scope('layer1'):
		#这里通过tf.get_variable或tf.Variable没有本质区别,因为在训练或是在测试中没有在同一个程序中多次调用这个函数。如果在同一个程序中
		#多次调用,在第一次调用之后需要将reuse参数设置为True
		weights=get_weight_variable([INPUT_NODE,LAYER1_NODE],regularizer)
		biases=tf.get_variable("biases",[LAYER1_NODE],initializer=tf.constant_initializer(0.0))
		layer1=tf.nn.relu(tf.matmul(input_tensor,weights)+biases)
		
	#类似的声明第二层神经网络的变量并完成前向传播过程
	with tf.variable_scope('layer2'):
		weights=get_weight_variable([LAYER1_NODE,OUTPUT_NODE],regularizer)
		biases=tf.get_variable("biases",[OUTPUT_NODE],initializer=tf.constant_initializer(0.0))
		layer2=tf.matmul(layer1,weights)+biases
	
	#返回最后前向传播结果
	return layer2
		

mnist_train.py中程序如下:

import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#加载mnist_interence.py中定义的常量和前向传播函数
import mnist_inference

#配置神经网络的参数
BATCH_SIZE=100
LEARNING_RATE_BASE=0.8
LWARNING_RATE_DECAY=0.99
REGULARAZTION_RATE=0.0001
TRAINING_STEPS=30000
MOVING_AVERAGE_DECAY=0.99

#模型保存的路径和文件名。
MODEL_SAVE_PATH="/model/"
MODEL_NAME="model.ckpt"

#定义训练过程
def train(mnist):
	#定义输入输出placeholder.
	x =tf.placeholder(tf.float32,[None,mnist_inference.INPUT_NODE],name="x-input")
	y_=tf.placeholder(tf.float32,[None,mnist_inference.OUTPUT_NODE],name="y-input")
	
	regularizer=tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
	#直接使用mnist_interence.py中定义的前向传播过程
	y=mnist_inference.inference(x,regularizer)
	global_step=tf.Variable(0,trainable=False)
	
	#定义滑动平均类和滑动平均操作
	variable_averages=tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
	variables_averages_op=variable_averages.apply(tf.trainable_variables())
	
	#定义交叉熵损失
	cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))
	cross_entropy_mean=tf.reduce_mean(cross_entropy)
	#定义总损失(交叉熵损失+正则化损失)
	loss=cross_entropy_mean+tf.add_n(tf.get_collection('losses'))
	#定义学习率
	learning_rate=tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples/BATCH_SIZE,LWARNING_RATE_DECAY)
	#定义反向传播算法更新神经网络的参数,同时更新每一个参数的滑动平均值
	train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
	with tf.control_dependencies([train_step,variables_averages_op]):
		train_op=tf.no_op(name='train')

	#初始化Tensorflow持久化类
	saver=tf.train.Saver()
	with tf.Session() as sess:
		#变量初始化
		tf.global_variables_initializer().run()
		
		#在训练过程中不再测试模型在验证数据上的表现,验证和测式的过程将会在一个独立的程序中完成
		for i in range(TRAINING_STEPS):
			xs,ys=mnist.train.next_batch(BATCH_SIZE)
			_,loss_value,step=sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})
			
			#每100轮保存一次模型
			if i%1000==0:
				#输出当前的训练情况。这里只输出了模型在当前训练patch上的损失函数大小。通过损失函数的大小可以大概了解训练的情况。
				#在验证数据集上正确率信息会有一个单独的程序来完成。
				print("Afetr %d training step(s),loss on training batch is %g." % (step,loss_value))
				
				#保存当前的模型。注意这里给出了global_step参数,这样可以让每个被保存模型的文件名末尾加上训练的轮数,比如“model.ckpt-1000”
				#表示训练1000轮之后得到的模型。
				#saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)	
		#在测试或者离线时,保存
		saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)
				

#主程序入口
def main(argv=None):
	#声明处理MNIST数据集的类,这个类在初始化时会自动下载数据
	mnist=input_data.read_data_sets("/tmp/data/",one_hot=True)
	train(mnist)
	
#Tensorflow提供的一个主程序入口,tf.app.run会调用上面定义的main函数。
if __name__ == '__main__':
	tf.app.run()
	
	

mnist_eval.py中程序如下:

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#加载mnist_inference.py 和 mnist_train.py 中定义的常量函数
import mnist_inference
import mnist_train

#每10秒加载一次最新的模型,并在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS=10

def evaluate(mnist):
	with tf.Graph().as_default() as g:
		#定义输入输出的格式
		x =tf.placeholder(tf.float32,[None,mnist_inference.INPUT_NODE],name="x-input")
		y_=tf.placeholder(tf.float32,[None,mnist_inference.OUTPUT_NODE],name="y-input")
		#准备验证数据
		validate_feed={x:mnist.validation.images,y_:mnist.validation.labels}
		#准备测试数据
		test_feed={x:mnist.test.images,y_:mnist.test.labels}
		
		
		#直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关心正则化损失的值,所以这里用于计算正则化损失的函数别设置为None
		y=mnist_inference.inference(x,None)
		
		#使用前向传播的结果计算正确率。如果需要对未知的样例进行分类,那么使用tf.argmax(y,1)就可以得到输入样例的预测类别了
		correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
		accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
		
		#通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均的函数来获取平均值了。这样就可以完全共用mnist_inferece.py中
		#定义的前向传播过程
		variable_averages=tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
		variables_to_restore=variable_averages.variables_to_restore()
		saver=tf.train.Saver(variables_to_restore)
		
		#每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检测训练过程中正确率的变化
		#while True:
		with tf.Session() as sess:
			#tf.train.get_checkpoint_state函数会通过checkpoint文件自动找到目录中最新模型的文件名
			ckpt=tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
			if ckpt and ckpt.model_checkpoint_path:
				#加载模型
				saver.restore(sess,ckpt.model_checkpoint_path)
				#通过文件名得到模型保存时迭代的轮数
				global_step=ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
				#得到在验证数据上的正确率
				validate_acc=sess.run(accuracy,feed_dict=validate_feed)
				#得到在测试数据上的正确率
				test_acc=sess.run(accuracy,feed_dict=test_feed)
				print("After %s training step(s), validation accuracy=%g" % (global_step,validate_acc))
				print("After %s training step(s), test accuracy=%g" % (global_step,test_acc))
				
			else:
				print('No checkpoint file found')
				return
				
		time.sleep(EVAL_INTERVAL_SECS)
			
#主程序入口
def main(argv=None):
	#声明处理MNIST数据集的类,这个类在初始化时会自动下载数据
	mnist=input_data.read_data_sets("/tmp/data/",one_hot=True)
	evaluate(mnist)
	
#Tensorflow提供的一个主程序入口,tf.app.run会调用上面定义的main函数。
if __name__ == '__main__':
	tf.app.run()
				
				

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

年轮陌羽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值