1.KNN算法描述
简单来说:k-近邻算法(knn)采用测量不同特征值之间的距离算法进行分类
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
工作原理:存在一个训练样本集,样本集中每个数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最近邻)的分类标签。一般来说,只选择样本数据集中前k个最相似的数据。通常k是不大于20的整数。
2.python3代码实现
# -- coding: utf-8 --
import numpy as np
import operator
def createDataSet():
# 创建数据集
group = np.array([[1.0, 1.1], [1.1, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataSet,<