老师分糖果--差分约束

幼儿园里有 N 个小朋友,老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。

但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, 老师需要满足小朋友们的 K 个要求。

幼儿园的糖果总是有限的,老师想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

输入格式
输入的第一行是两个整数 N,K。

接下来 K 行,表示分配糖果时需要满足的关系,每行 3 个数字 X,A,B。

如果 X=1.表示第 A 个小朋友分到的糖果必须和第 B 个小朋友分到的糖果一样多。
如果 X=2,表示第 A 个小朋友分到的糖果必须少于第 B 个小朋友分到的糖果。
如果 X=3,表示第 A 个小朋友分到的糖果必须不少于第 B 个小朋友分到的糖果。
如果 X=4,表示第 A 个小朋友分到的糖果必须多于第 B 个小朋友分到的糖果。
如果 X=5,表示第 A 个小朋友分到的糖果必须不多于第 B 个小朋友分到的糖果。
小朋友编号从 1 到 N。

输出格式
输出一行,表示老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出 −1。

数据范围
1≤N<105,
1≤K≤105,
1≤X≤5,
1≤A,B≤N
输入样例:
5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1
输出样例:
11
求老师至少准备多少糖果,
求最小值,最长路。
五个语句都可以转换成大于等于的不等式
x=1 a-b>=0,b-a>=0
x=2 b-a>0 即b-a>=1
x=3 a-b>=0
x=4 a-b>=1
x=5 a-b<=0
具体看代码注释

#include<bits/stdc++.h>
using namespace std;
const int N=3e5+10;
int n,m,s;
int h[N],idx,ne[N],e[N],w[N];
void add(int a,int b,int c){
	e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
int dist[N],st[N],cnt[N];
int spfa(){
	queue<int> q;
	q.push(0),st[0]=1,dist[0]=0;//从0开始,有负权边至少更新为1(小朋友至少有一个糖果) 符合实际意义
	while(q.size()){
		int t=q.front();q.pop();st[t]=0;
		for(int i=h[t];i!=-1;i=ne[i]){
			int j=e[i];
			if(dist[j]<dist[t]+w[i]){//最长路
				dist[j]=dist[t]+w[i];
				cnt[j]=cnt[t]+1;
				if(cnt[j]>=n+1) return -1;
				if(st[j]!=1) st[j]=1,q.push(j);
			}
		}
	}
	return 0;
}
int main(){
		cin>>n>>m;
		memset(h,-1,sizeof h);
		for(int i=1;i<=m;i++){//五个语句转换
			int a,b,c;cin>>a>>b>>c;
			if(a==1) add(b,c,0),add(c,b,0);
			else if(a==2) add(b,c,1);
			else if(a==3) add(c,b,0);
			else if(a==4) add(c,b,1);
			else add(b,c,0);
		}
		for(int i=1;i<=n;i++) add(0,i,1);//添加超级源点,因为每个小朋友都必须有糖果,边权为1
		int t=spfa();long long res=0; //爆int 
		if(t==-1) cout<<t;//负环 
		else {
			for(int i=1;i<=n;i++) res+=dist[i];//糖果总和
			cout<<res;
		}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值