项目简介与模型基本介绍
MiniCPM-o 是由 OpenBMB 团队开源的多模态视觉语言模型(Vision-Language Model, VLM)系列,聚焦于轻量级、高效能的视觉语言理解与生成。MiniCPM-V 2.6 和 MiniCPM-V 4.0 是该系列的两代代表性模型,分别在模型结构、预训练数据、能力边界等方面实现了显著突破。
MiniCPM-V 2.6
- 约26亿参数(2.6B),主打轻量级与高效推理
- 支持图文理解、图片描述、视觉问答等多模态任务
- 适合边缘设备、低资源场景
MiniCPM-V 4.0
- 约40亿参数(4.0B),在结构和能力上全面升级
- 增强多模态推理、复杂场景理解、细粒度视觉描述等能力
- 更强的泛化性和多任务适应性
MiniCPM-V 2.6 与 MiniCPM-V 4.0 的区别与联系
联系
- 均为 MiniCPM-o 项目下的多模态视觉语言模型,采用视觉编码器+语言模型的主流架构
- 均支持图片+文本输入,具备视觉问答、图片描述、指令跟随等能力
- 均以高效、轻量为目标,适合实际部署和应用
主要区别
维度 | MiniCPM-V 2.6 | MiniCPM-V 4.0 |
---|---|---|
参数规模 | 2.6B | 4.0B |
视觉编码器 | ViT-B/16(或自研轻量ViT) | ViT-L/14(更大更强) |
语言模型 | MiniCPM-2.6B | MiniCPM-4.0B |
融合方式 | 基础跨模态融合(Cross Attention) | 多层深度融合+自适应门控 |
预训练数据 | 约10亿图文对,COCO、LAION等 | 约20亿图文对,涵盖更多领域 |
能力边界 | 基础视觉问答、描述、指令跟随 | 复杂推理、细粒度理解、多任务 |
推理效率 | 极致轻量,适合边缘设备 | 性能提升,适合多场景部署 |
细节创新 | 轻量化结构、稀疏注意力 | 多模态门控、动态融合机制 |
模型结构设计
MiniCPM-V 2.6 结构解析
1. 视觉编码器
- 采用