开源多模态视觉大模型:MiniCPM-V 4.0 VS MiniCPM-V 2.6

项目简介与模型基本介绍

MiniCPM-o 是由 OpenBMB 团队开源的多模态视觉语言模型(Vision-Language Model, VLM)系列,聚焦于轻量级、高效能的视觉语言理解与生成。MiniCPM-V 2.6 和 MiniCPM-V 4.0 是该系列的两代代表性模型,分别在模型结构、预训练数据、能力边界等方面实现了显著突破。

MiniCPM-V 2.6

  • 约26亿参数(2.6B),主打轻量级与高效推理
  • 支持图文理解、图片描述、视觉问答等多模态任务
  • 适合边缘设备、低资源场景

MiniCPM-V 4.0

  • 约40亿参数(4.0B),在结构和能力上全面升级
  • 增强多模态推理、复杂场景理解、细粒度视觉描述等能力
  • 更强的泛化性和多任务适应性

MiniCPM-V 2.6 与 MiniCPM-V 4.0 的区别与联系

联系

  • 均为 MiniCPM-o 项目下的多模态视觉语言模型,采用视觉编码器+语言模型的主流架构
  • 均支持图片+文本输入,具备视觉问答、图片描述、指令跟随等能力
  • 均以高效、轻量为目标,适合实际部署和应用

主要区别

维度 MiniCPM-V 2.6 MiniCPM-V 4.0
参数规模 2.6B 4.0B
视觉编码器 ViT-B/16(或自研轻量ViT) ViT-L/14(更大更强)
语言模型 MiniCPM-2.6B MiniCPM-4.0B
融合方式 基础跨模态融合(Cross Attention) 多层深度融合+自适应门控
预训练数据 约10亿图文对,COCO、LAION等 约20亿图文对,涵盖更多领域
能力边界 基础视觉问答、描述、指令跟随 复杂推理、细粒度理解、多任务
推理效率 极致轻量,适合边缘设备 性能提升,适合多场景部署
细节创新 轻量化结构、稀疏注意力 多模态门控、动态融合机制

模型结构设计

MiniCPM-V 2.6 结构解析

1. 视觉编码器
  • 采用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值