
强化学习
文章平均质量分 84
ersaijun
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
强化学习(Reinforcement Learning, RL)的框架
框架名称主要特点最佳应用场景rl_games高性能,GPU 优化,与 NVIDIA 生态集成复杂的机器人运动仿真训练rsl_rl专精于四足机器人,高效轻量训练四足机器人的运动策略sb3易用,算法全面,社区强大快速原型开发和学习强化学习skrl模块化,框架无关,高度可定制需要定制化算法或研究新方法robomimic专注于模仿学习和离线RL从人类演示数据中学习机器人操作技能想做快速原型或学习?选SB3。想训练四足机器人?选rsl_rl。使用并追求最佳性能?选rl_games。想从。原创 2025-08-24 08:00:17 · 401 阅读 · 0 评论 -
01-Steps toward Artificial Intelligence
但文章也尖锐地指出了“信用分配问题”(credit-assignment problem):在一个由数百万个决策组成的复杂任务中(如赢得一盘棋),如何将最终的成功或失败合理地归功于每一个具体的决策?:这是最基本的问题。虽然作者相信通过复杂组合可以构建出强大的问题求解程序,但他认为真正的智能可能还包含更深层次的、尚未被理解的方面。它将AI的核心任务定义为通过启发式方法克服搜索的指数级爆炸问题,并系统地阐述了搜索、模式识别、学习、规划和归纳这五大支柱,深刻影响了后续数十年AI的发展方向。原创 2025-08-01 15:31:34 · 538 阅读 · 0 评论