Master公式

本文介绍了Master公式在分析子问题规模相同递归问题中的应用,它有助于快速计算时间复杂度,特别适用于规模不变的情况。文章还提到一个推导视频链接以供深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Master公式的含义

二、Master公式的用处和适用范围

三、推导

归并排序通常分为递归和非递归两种版本的写法,通过非递归的写法,我们可以清晰地看出其n*logN的时间复杂度,但递归的写法就显得不那么直观了。那么,我们在处理这种子问题规模相同的递归问题时有没有什么方便的公式能快速地求解呢?

答案就是这篇文章的所讲的Master公式。

1.含义

注释:n代表数据的规模,a代表子过程调用的次数,b代表拆分成了多少个子问题。

2.用处

此公式可以快速地帮助我们快速计算子规模相同的递归问题的时间复杂度,节省时间。

注意:此公式专门适用于子问题规模相同的情况,不平均拆分的情况并不适用。

3.推导

具体的推导过程大家可以看B站上的这个视频

【Proving_the_Master_Theorem】 https://www.bilibili.com/video/BV1K54y1y7kk/?share_source=copy_web&vd_source=3254543d45eb20829f2c93186801f61f

其中涉及较多数学,这里就不再赘述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值