LeetCode 295. Find Median from Data Stream(java)

本文介绍了一种使用最大堆和最小堆的数据结构设计,该设计可以高效地处理流数据并实时计算中位数。通过两种不同的堆实现,确保了数据的平衡分布,并能快速响应数据流变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples:
[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Design a data structure that supports the following two operations:

void addNum(int num) - Add a integer number from the data stream to the data structure.
double findMedian() - Return the median of all elements so far.

For example:

addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3) 
findMedian() -> 2
思路:这里我们用两个heap来存储数据,一个最大堆,一个最小堆,分成三种情况s - s, s + 1 - s, s - s + 1讨论。
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> (o2 - o1));
    PriorityQueue<Integer> minHeap = new PriorityQueue<>((o1, o2) -> (o1 - o2));
    public MedianFinder() {
    }

    public void addNum(int num) {
        if (maxHeap.isEmpty() || num < maxHeap.peek()) {
            maxHeap.offer(num);
        } else {
            minHeap.offer(num);
        }

        if (maxHeap.size() == minHeap.size() + 2) {
            minHeap.offer(maxHeap.remove());
        }
        if (maxHeap.size() + 2 == minHeap.size()) {
            maxHeap.offer(minHeap.remove());
        }
    }

    public double findMedian() {
        if (maxHeap.size() == minHeap.size()) {
            return (maxHeap.peek() + minHeap.peek()) / 2.0;
        } else if (maxHeap.size() > minHeap.size()) {
            return maxHeap.peek();
        } else {
            return minHeap.peek();
        }
    }
heap的第二种写法,分为两种情况考虑,只有s - s和s + 1 - s。
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> (o2 - o1));
    PriorityQueue<Integer> minHeap = new PriorityQueue<>((o1, o2) -> (o1 - o2));
    public MedianFinder() {

    }

    public void addNum(int num) {
        if (!minHeap.isEmpty() && minHeap.peek() < num) {
            maxHeap.offer(minHeap.remove());
            minHeap.offer(num);
        } else {
            maxHeap.offer(num);
        }
        if (maxHeap.size() == minHeap.size() + 2) {
            minHeap.offer(maxHeap.remove());
        }
    }

    public double findMedian() {
        if (maxHeap.size() == minHeap.size()) {
            return (maxHeap.peek() + minHeap.peek()) / 2.0;
        } else {
            return maxHeap.peek();
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值