
RAG
文章平均质量分 83
茫茫人海一粒沙
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
使用 LangChain 和 Neo4j 构建知识图谱
在现代 AI 应用中,将文本内容结构化为知识图谱是一种非常实用的方法,可以帮助我们更高效地进行信息查询、知识推理和数据分析。本文将结合和实战代码,演示如何使用将文本内容自动转换为知识图谱。原创 2025-08-23 17:44:00 · 473 阅读 · 0 评论 -
给 AI 装上长期记忆:Zep Cloud 初探与上手教程
传统的聊天机器人往往是「短期记忆」:只记住本轮对话内容。而 Zep 则进一步赋予 AI 「长期记忆」:它能管理用户信息、保存对话线程、抽取知识图谱,并支持高效的检索和推理。对于想要打造真正个性化 AI 助手的开发者来说,Zep 提供了一套非常实用的工具。未来我们还可以基于这些记忆能力,构建更加智能、持久且个性化的 AI 应用。原创 2025-08-23 11:30:29 · 730 阅读 · 0 评论 -
LangGraph 的官网的一个最简单的聊天机器人
在 LangGraph 里,状态(State)就是节点之间传递的数据结构。这里我们用messages来存储对话历史,并用来定义合并规则。的作用是告诉 LangGraph:当多个节点都往messages里写数据时,不要覆盖,而是追加。这样才能维持完整的对话历史。我们的核心节点就是调用 LLM(通义千问):可以改成其它的大语言模型这里。这里:(对话历史)输出:新的消息(由 LLM 生成)LangGraph 会自动把它合并到messages里。原创 2025-08-17 16:35:39 · 159 阅读 · 0 评论 -
RAG 分块中表格填补简明示例:Markdown、HTML、Excel、Doc
表格填补是RAG分块中常见的需求,但不同格式的表格处理方式有所不同。本文将对的合并单元格进行说明,并给出 Python 示例,演示如何解析和填补。原创 2025-08-17 14:58:59 · 476 阅读 · 0 评论 -
LangGraph 入门教程:从单节点到条件分支,并行节点
单节点工作流—— 最小可运行示例。多节点顺序执行—— 构建处理链路。条件分支—— 根据输入动态走不同路径。并行执行—— 多个节点同时运行,最后汇合结果。这三种能力基本覆盖了大多数应用场景。并行节点:让多个节点同时运行。循环逻辑:实现循环处理,直到满足条件。结合 LLM:在节点中调用大语言模型,构建智能对话 Agent。LangGraph 的图式工作流思想能让你的代码更直观、可维护,是构建复杂 AI 应用的利器。原创 2025-08-17 10:36:54 · 568 阅读 · 0 评论 -
HyDE 在 RAG 知识问答助手中的应用解析
HyDE 的全称是,直译为“假设文档嵌入”。它的核心思想是:在检索之前,先用大模型根据用户的提问生成一段假设答案(即便不完全正确也没关系),再将这段假设答案向量化用于检索,而不是直接用原始问题去查。语义更丰富:假设答案往往包含了问题的核心概念、关键词和相关背景信息。缩小表达差距:解决用户问题表述和知识库原文差异过大的问题。提升召回率:检索到的候选文档更相关,从而提高生成回答的质量。先让模型“假装知道”,再用这个假设去找真正的答案。原创 2025-08-10 17:58:48 · 780 阅读 · 0 评论 -
RAG中的评估指标总结:BLEU、ROUGE、 MRR、MAP、nDCG、Precision@k、Recall@k 等
衡量的是生成文本中与参考文本之间。原创 2025-08-04 22:34:45 · 814 阅读 · 0 评论 -
全面解析 BGE Embedding 模型:训练方式、模型系列与实战用法
BGE,全称,是一个开放的句向量模型系列,主要用于:向量搜索RAG 检索增强问答多轮语义匹配文档聚类与推荐系统它由北京智源人工智能研究院(BAAI)与其开源团队推出,目标是打造指令可控、高性能、支持多语言的句子/文档 embedding 模型。BGE 是目前最强的开源嵌入模型之一,具备高精度、多语言、指令控制的优势。无论你是在构建 RAG 系统、语义搜索引擎,还是构建问答机器人,它都是极具性价比的选择。原创 2025-08-03 16:09:36 · 1261 阅读 · 0 评论 -
使用 BERT 的 NSP 实现语义感知切片 —— 提升 RAG 系统的检索质量
NSP 是 BERT 在预训练阶段的两个任务之一,其目标是判断两个句子是否在原始文本中是相邻的。具体来说,给定句子 A 和 B,BERT 会输出一个判断:“B 是不是 A 的下一句?我们可以反过来利用这个能力,判断两个句子之间是否具有语义连续性,从而找出应该切片的位置。使用 BERT NSP 实现文本切片是一种兼顾语义完整性和实现简便性的优秀方法,特别适合构建高质量的文档检索系统(如 RAG)。它避免了固定窗口切片的语义割裂问题,生成的 chunk 更自然、上下文更丰富。原创 2025-08-02 22:00:06 · 456 阅读 · 0 评论 -
Milvus:开源向量数据库的初识
fields = [schema = CollectionSchema(fields, description="文本向量检索示例")Milvus 作为领先的开源向量数据库,提供了强大且灵活的向量存储和检索能力。通过合理利用其多样化的索引结构和混合搜索能力,开发者可以高效搭建面向语义理解、图像识别等场景的智能检索系统。原创 2025-07-21 12:34:58 · 437 阅读 · 0 评论 -
文档切片在 RAG 系统中的方法详解:原理、优劣与实战代码
文档切片不是一个“剪刀石头布”的游戏,而是 RAG 系统中影响最终效果的底层策略设计。选择合适的切片方法,可以显著提升你的:检索准确率上下文质量模型生成效果结合自己的数据结构与业务目标,合理选择或组合切片方式,才能打造一个真正强大、实用的 AI 检索问答系统。原创 2025-07-04 12:35:20 · 867 阅读 · 0 评论 -
RAG全流程详解:原理、步骤与实战技术推荐
在生成回答之前,先从外部知识库中检索相关信息,再将检索到的内容与用户问题一同输入大语言模型,生成基于知识的高质量回答。它结合了信息检索(IR)和生成模型的优势,既提升了回答的准确性,也增加了系统的可解释性。RAG通过将检索与生成结合,显著提升了大语言模型回答问题的准确性和实用性。掌握每个步骤的核心要点和最佳实践,能够帮助你快速搭建适合自己业务场景的智能问答系统。预处理提升检索精度精排提高相关性和忠实度灵活Prompt设计引导模型生成自动评估驱动持续优化。原创 2025-06-29 16:53:26 · 2273 阅读 · 0 评论 -
Bi-Encoder 与 Cross-Encoder 全解析:原理、对比与实战模型推荐
Bi-Encoder 是一种将 Query 和 Document 分别编码为向量的架构,通常用于大规模语义检索任务。Cross-Encoder 将 Query 和 Document 拼接后,一起输入到一个 Transformer 模型中,进行整体编码与匹配打分。应用场景推荐使用方式大规模语义检索Bi-Encoder + 向量数据库小规模高质量排序高性能企业RAG系统。原创 2025-06-27 11:35:03 · 1398 阅读 · 0 评论