前言
字符串的动态规划问题,感觉找两个字符串之间的某种关系,比如最长公共子序列,回文序列之类的,都用到了动态规划。
我记得floyd算法也是典型的动态规划问题。
当初讲算法导论的时候,动态规划这里就听的迷迷糊糊的,我印象中好像就是填一个矩阵,这个矩阵有一些数很容易求,关键是找关系方程。
实践倒是很少,这道题也算一个锻炼吧。
提示:代码大概20分钟打出来了,但是清晰的找到状态转移方程这个过程倒是摸索了很久,但是不幸的是,只用递归加状态转移方程超时了,因为有大量的重复计算。
但是相同的思路,用上了动态规划,多了一步矩阵的转换和运算,就很好。
一、题目
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)题目数据保证答案符合 32 位带符号整数范围。
示例 1:
输入:s = “rabbbit”, t = “rabbit”
输出:3
解释:
如下图所示, 有 3 种可以从 s 中得到 “rabbit” 的方案。
(上箭头符号 ^ 表示选取的字母)
rabbbit
^^^^ ^^
rabbbit
^^ ^^^^
rabbbit
^^^ ^^^
示例 2:
输入:s = “babgbag”, t = “bag”
输出:5
解释:
如下图所示, 有 5 种可以从 s 中得到 “bag” 的方案。
(上箭头符号 ^ 表示选取的字母)
babgbag
^^ ^
babgbag
^^ ^
babgbag
^ ^^
babgbag
^ ^^
babgbag
^^^
提示:
0 <= s.length, t.length <= 1000
s 和 t 由英文字母组成
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/distinct-subsequences
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、解答
1.我的超时方法
解题思路
“aabdbaabeeadcbbdedacbbeecbabebaeeecaeabaedadcbdbcdaabebdadbbaeabdadeaabbabbecebbebcaddaacccebeaeedababedeacdeaaaeeaecbe”
“bddabdcae”
这个测试用例,在leetcode上超出时间限制,自己用编译器打了一下,发现数是一样的,好难受。。。
大体的思路相当于是递归+发现状态转移方程
s :a0 a1 …an-1
t :b0 b1 …bm-1
(1)如果a0!=b0, 那么相当于对s :a1 …an-1 ;t :b0 b1 …bm-1计算
(2)如果a0==b0 ,分两种情况
1、相当于对s: a1 …an-1 ;t :b1 …bm-1计算
2、相当于对s: a1 …an-1 ;t: b0 b1 …bm-1计算
1、2加起来即可
代码如下:
class Solution {
public:
int numDistinct(string s, string t) {
if(s.size()<t.size()||s.empty()||t.empty()) return 0;
if(s.size()==t.size()&&s.compare(t)==0) return 1;
//if(s.size()==t.size()&&s.compare(t)!=0) return 0;
if(t.size()==1){
int i=0;
int m=0;
for(i=0;i<s.size();i++){
if(s[i]==t[0]) m++;
}
return m;
}
if(s.size()==1) return s[0]==t[0];
//终止条件
//递归主函数
if(s[0]!=t[0]) return numDistinct(s.substr(1),t);
else if(s[0]==t[0]) return numDistinct(s.substr(1),t.substr(1))+numDistinct(s.substr(1),t);
else return -1;
}
2.答案的解答
总结
状态转移方程结合动态规划使用更加哦,
而且听说这还是一个典型的动态规划问题。。。。。。