电商零售业2--商品销量预测

本文介绍了使用Python进行电商零售商品销量预测的过程,包括数据导入、数据处理(平稳性检验、自相关与偏自相关分析)、模型筛选和构建,以及最终的模型预测环节。

说明:以某课程化妆品数据为例,预测该产品未来三个月销量情况;如有侵权,请联删除,感谢!

1. 导入数据

1.1 导入包

import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.graphics.api import qqplot
%matplotlib inline
plt.rcParams["font.sans-serif"]=["SimHei"]
plt.rcParams["axes.unicode_minus"]=False

import warnings
warnings.filterwarnings('ignore')
dataCos=pd.read_spss('化妆品销量.sav')
dataCos.head(6)

化妆品销量

2. 数据处理

dataCos.index= pd.Index(sm.tsa.datetools.dates_from_range('2011m1', '2013m5'))# 添加时间格式
dataCos.head(3)

添加index

2.1 平稳性检验

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值