openmanus agent工具类分析

 工具类基类:BaseTool

被其他10个子类工具类继承:

bash工具类

核心逻辑是一个基于asyncio.subprocess.Process 实现的/bin/bash命令的工具类:

asyncio.subprocess.Process 是 Python 异步编程中用于管理子进程的核心类,其设计目标是提供与 subprocess.Popen 类似的接口,但完全适配异步 I/O 模型。

browser_user_tool工具类

基于browser_use库实现:

具体能力待验证;

create_chat_completion工具类

结构化聊天补全工具​​,其核心功能是根据用户指定的输出类型动态生成参数模式,并执行类型安全的数据转换。以下是具体功能的拆解:


​一、核心功能架构​
  1. ​工具类继承与基础属性​

    • 继承自 BaseTool(假设为自定义工具基类),通过 name 和 description 定义工具标识
    • type_mapping 实现 Python 类型到 JSON Schema 类型的映射(如 str → "string"),用于参数生成
  2. ​动态参数模式生成​

    • 根据 response_type 动态构建参数模式(_build_parameters 方法):
      • ​简单类型​​(如 str):生成 {"type": "string"} 的 response 字段
      • ​Pydantic 模型​​:提取模型的 JSON Schema(如 model_json_schema),直接复用其属性定义
      • ​复杂类型​​(如 List/Dict/Union):递归解析嵌套类型,生成符合 JSON Schema 的结构(如 array/object/anyOf

​二、关键技术实现​
  1. ​类型解析与递归处理​

    • 通过 get_origin 和 get_args 解析泛型类型(如 List[int] 拆解为 list 和 int
    • 支持嵌套类型处理(如 List[Dict[str, int]] 生成多层嵌套的 items 定义)
  2. ​类型安全转换​

    • 在 execute 方法中,根据 response_type 进行类型强制转换:
      • ​Pydantic 模型​​:将输入数据实例化为模型对象(如 self.response_type(​**​kwargs)),实现自动验证
      • ​基础类型​​(如 int/bool):尝试将字符串结果转换为目标类型(如 int("42")),失败时回退原始值

​三、应用场景与设计优势​
  1. ​适用场景​

    • ​API 集成​​:与 OpenAI ChatCompletion API 对接时,生成符合模型要求的参数结构
    • ​函数调用(Function Calling)​​:通过动态生成的 JSON Schema 描述外部函数参数,支持 function_call 参数配置
    • ​多格式输出​​:支持字符串、列表、字典及自定义模型输出,适应不同下游需求(如 CLI 文本、Web API 的 JSON 响应)
  2. ​设计优势​

    • ​灵活性​​:通过 response_type 参数可扩展支持任意输出类型(包括第三方模型)。
    • ​类型安全​​:利用 Pydantic 强制校验输入数据,减少运行时错误
    • ​标准化输出​​:生成的 JSON Schema 符合 OpenAI API 规范,避免手动定义参数结构的冗余

​四、示例说明​

假设定义 response_type 为以下 Pydantic 模型:

class WeatherResponse(BaseModel):
    city: str
    temperature: float
    unit: Literal["Celsius", "Fahrenheit"]

代码将自动生成参数模式:

{
  "type": "object",
  "properties": {
    "city": {"type": "string"},
    "temperature": {"type": "number"},
    "unit": {"enum": ["Celsius", "Fahrenheit"]}
  },
  "required": ["city", "temperature", "unit"]
}

执行时,若输入 {"city": "Beijing", "temperature": 25.5, "unit": "Celsius"},会被自动转换为 WeatherResponse 实例。


该代码通过​​动态参数生成​​与​

### 关于Agent AI数据分析工具的功能 Agent作为一种智能体,在特定场景下能够做出决策并执行相应操作,同样可以应用于数据分析领域。这种类型的Agent被设计成具备处理复杂数据集的能力,并能从中提取有价值的信息来辅助决策过程[^1]。 对于具体功能而言,基于AI大模型驱动的Agent智能数据分析平台不仅提供了强大的计算能力和高效的算法支持,还实现了交互式的用户体验界面,使得用户可以通过简单的指令完成复杂的查询请求;同时该平台也强调了高可靠性保障措施以确保长时间稳定运行和服务质量不受影响[^2]。 ```python # 示例代码:通过API调用获取分析报告 import requests def get_analysis_report(api_key, dataset_id): url = f"https://api.agentai.com/v1/datasets/{dataset_id}/analyze" headers = {"Authorization": f"Bearer {api_key}"} response = requests.post(url, headers=headers) if response.status_code == 200: return response.json() else: raise Exception(f"Error fetching report: {response.text}") ``` ### 使用教程概览 为了帮助初次接触此工具的新手快速上手,官方文档通常会提供详细的安装指南、配置说明以及基础命令介绍等内容。除此之外,还有专门针对不同行业需求定制化的案例研究可供参考学习,这些资源可以帮助使用者更好地理解如何利用Agent来进行有效的数据分析工作[^3]。 ### 应用场景举例 - **金融风险评估**:通过对历史交易记录的学习预测未来可能出现的风险点; - **市场营销优化**:依据客户行为模式调整广告投放策略提高转化率; - **医疗健康监测**:实时跟踪患者生理指标变化趋势以便及时采取治疗措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值