vLLM(Vectorized Large Language Model Inference)本身是一个专注于大模型推理的高性能引擎,并不支持模型训练。 以下是关键点解析:
🚫 为什么 vLLM 不能用于训练?
-
核心设计目标不同
- ✅ vLLM:优化 LLM 推理(低延迟、高吞吐)
→ 核心技术:PagedAttention
(显存分页管理)、连续批处理(Continuous Batching) - ❌ 训练功能缺失:
- 无梯度计算与反向传播
- 无优化器(如 AdamW)参数更新机制
- 无分布式训练框架(如 DeepSpeed/FSDP 集成)
- ✅ vLLM:优化 LLM 推理(低延迟、高吞吐)
-
技术架构限制
训练必要组件 vLLM 是否支持 说明 自动微分(Autograd) ❌ 不支持 仅执行前向传播 梯度累积 ❌ 不支持 无梯度计算能力 Checkpoint 保存 ❌ 不支持 无模型参数更新过程
🛠️ 训练大模型的标准工具链
若需训练/微调大模型,应选择以下框架:
✅ 主流训练框架
框架 | 适用场景 | 关键特性 |
---|---|---|
PyTorch | 通用训练(支持自定义模型) | 灵活动态图、丰富生态 |
Hugging Face Transformers | 微调预训练模型(如 BERT、LLaMA) | 提供 Trainer API、LoRA 等高效微调 |
DeepSpeed | 百亿级以上模型分布式训练 | ZeRO 显存优化、3D 并行 |
MegaTron-LM | 千亿级模型训练(如 GPT-3) | 张量/流水线并行 |
🔄 vLLM 与训练框架的协作关系
尽管 vLLM 不参与训练,但可与训练框架配合实现 “训练 → 推理” 高效衔接:
典型流程:
- 用 Hugging Face + DeepSpeed 微调 LLaMA-7B
- 将训练好的模型转换为 vLLM 支持的格式(如
llama-7b-finetuned
) - 通过 vLLM 部署推理 API,性能提升 5-10 倍(相比原生 Hugging Face 推理)
🌰 vLLM 推理 vs. 训练代码示例
vLLM 仅做推理(Python)
from vllm import LLM, SamplingParams
# 加载训练好的模型
llm = LLM(model="meta-llama/Llama-2-7b-chat-hf")
# 执行推理
outputs = llm.generate(
["Hello, my name is", "The future of AI is"],
SamplingParams(temperature=0.8, max_tokens=100)
)
训练需用 PyTorch(Python)
from transformers import AutoModelForCausalLM, AdamW
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b")
optimizer = AdamW(model.parameters(), lr=5e-5)
for batch in dataloader:
outputs = model(**batch) # 前向传播
loss = outputs.loss
loss.backward() # 反向传播 ← vLLM 无此步骤
optimizer.step() # 参数更新 ← vLLM 无此步骤
💡 何时考虑 vLLM?
以下场景适合使用 vLLM:
- 已训练好模型,需 高并发低延迟部署(如 ChatAPI)
- 推理显存不足 → 通过
PagedAttention
节省 50%+ 显存 - 批处理吞吐量要求高 → 连续批处理提升 吞吐量 10 倍+
📌 总结
能力 | vLLM | 训练框架(PyTorch等) |
---|---|---|
推理优化 | ✅ 核心能力 | ⚠️ 需额外优化(如 vLLM) |
模型训练 | ❌ 不支持 | ✅ 原生支持 |
分布式训练 | ❌ 不支持 | ✅ 通过 DeepSpeed 实现 |
结论:
vLLM 是推理专用引擎,不可用于训练。但其推理优化技术可显著提升训练后模型的部署效率。
训练模型请选择:Transformers + PyTorch + DeepSpeed 技术栈。