使用AdaBoost组合多个tensorflow弱分类器

本文探讨如何通过AdaBoost算法将多个TensorFlow弱分类器整合,以提升整体的分类准确性和代码的可复用性。引用了技术文章进行深入讲解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“机械神会在知识之路上指引我们的脚步。”
——来自于技术主教雅菲尔的书《机魂的索伊伦翠绿》

 

尝试将多个tensorflow弱分类器用AdaBoost的方法连接,以提高分类准确率与代码复用性

赞美 https://blog.csdn.net/guyuealian/article/details/70995333

 

#=========================================================
#
# AdaBoost分类
#
# 用多个弱分类器组合成一个强分类器
#
#=========================================================

#                                            ;@#@@$|;'`.                                            `
#                                            ;@#############&|:`                                    `
#                                            ;@####################|`                               `
#                                            ;@####################@@##$:                           `
#                                            :@#@#########################@!.                       `
#                                      .%####$;::;$###########################|.                    `
#                                      .%####|    |#############################&:                  `
#                       .;&#%.         .%####|    |###########$!$##################|.               `
#                    '&##@##@$`        `%####|    |#@@#######%.    '$################|              `
#                 `%##########&: `:|&########|     .`:%#####%.        `$##############@;            `
#                  :&#############@@#########|                       .%###############@@$'          `
#                   '$#######################|                      .|###################@!.        `
#                    `$#############@########%.                    .|######################$`       `
#                   !##############@|'       :@#####&!'             .!@#####################&`      `
#       .%@;.     |#############%`           ;######@@###$`            ;@##################@@&'     `
#      :&#####&:|##########@#&:              ;@#############$.           ;@#&;`   |###########&:    `
#     |########@###########&'                :@#############@#$`                   '&##########&'   `
#    !####################|.         
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值