【深度学习】【AutoDL】【SSH】通过VSCode和SSH使用AutoDL服务器训练模型

本文详细介绍了如何通过AutoDL注册并租赁显卡资源,配置环境(包括PyTorch和Miniconda),使用FileZilla传输项目,通过Jupyter访问服务器,以及在VSCode中安装SSH插件连接服务器并运行深度学习项目。特别提到了无显卡模式的节约成本策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

身边没有显卡资源或不足以训练模型时,可以租赁服务器的显卡。

1、注册AutoDL并配置环境

首先打开AutoDL官网,注册账号并租赁自己期望的显卡资源
在这里插入图片描述
点击“租赁”之后,我们要继续选择基础环境。此处,我们让其自动配置好基础的pytorch,也可以选择Miniconda,后续自己用conda配置。因为我自己的模型需要用到pytorch,我就让它自动配置一下。
在这里插入图片描述

然后开机
在这里插入图片描述

2、 下载FileZilla并传输项目

写在前面,有可能你的项目会比较大,上传比较耗时,但服务器一直在开着,会比较费钱,可以先去把服务器关了,点“更多”,再点“无限卡模式开机”。这时你的服务器就不带GPU,平台只收你1毛钱一小时。(不过,如果你后面忘了关机并带GPU开机,显然你的项目是跑不起来的)
在这里插入图片描述

FileZilla用于本地和服务器传输文件。下载FileZilla

首先打开官网:
在这里插入图片描述

然后选择对应操作系统版本,下载
在这里插入图片描述

点这个,下载
在这里插入图片描述

然后就是正常的安装过程。。。省略了

接着打开安装好的FileZilla,点左上角这个书架(不听系统版本长得不完全一样,但差不多)
在这里插入图片描述

然后点击new site,填写这些信息。这些信息从哪来?看下一步
在这里插入图片描述
打开你的Auto DL,看你控制台,容器实例,你刚开机的机器这里有登录指令和密码。复制登录指令长这样:ssh -p 33768 root@region-41.seetacloud.com。我们把它拆解一下

  • host,也就是IP地址:region-41.seetacloud.com
  • 用户名:root
  • 端口:33768
    在这里插入图片描述

接着,连接FileZilla即可。然后可以传输你本地的项目文件到服务器上。
可以解释一下这个服务器上的文件结构:

  • 默认的base解释器:/root/miniconda3/bin/python.exe
  • conda环境列表:/root/miniconda3/envs
  • 一般,我们用来存放项目的位置:/root/autodl-tmp
    在这里插入图片描述

然后拖拽你的项目到右边就行了。

3、使用Jupyter访问服务器

在这之前,你需要在你的本地电脑上安装好anaconda。然后安装Jupyter notebook。

conda install jupyter notebook

安装好后,再打开你的AutoDL控制台,点这个Jupyter Lab。
在这里插入图片描述

应该是这样的画面:
在这里插入图片描述

然后点终端,就可以正常使用conda,安装我们自己的环境之类的了。其实jupyter也可以上传本地文件。。。。。
在这里插入图片描述

4、在VSCode里安装SSH插件并连接服务器

首先去插件市场里下载remote SSH插件
在这里插入图片描述

接着,打开这个插件,点击加号,在上面的空行中输入AutoDL的访问命令,就是那一串我们之前说过的命令,直接复制上去,然后回车
在这里插入图片描述

接着,它会让我们选择一个文件来保存我们的连接配置信息,不要多想,这只是便于它以后自动连接。点第一个就行
在这里插入图片描述

右下角会提示地址添加成功,点击连接即可,
在这里插入图片描述

点完之后,上面的空行会让我们输入一下密码

接着,打开我们刚才上传的项目文件。好像还要输入一次密码,如果有弹窗问你是否信任次项目,请点“Trust project”
在这里插入图片描述
在这里插入图片描述

这就是我们的项目了:
在这里插入图片描述

5、运行我们的深度学习项目

或许你会发现,你的vscode上并没有运行按钮,这是因为,你VSCODE没能识别服务器上这个文件是python项目(虽然你本地应该安装了python插件)。装一下即可(图标都带了一个SSH连接的表示)。
在这里插入图片描述

然后选择你的解释器,运行即可。
在这里插入图片描述

对了,不同的项目,也许环境不同,根据项目需要,用conda安装剩下所需的环境即可。(用上面所说的Jupyter中的命令行来装)而且如果你是“无显卡模式开机”的,重新带着GPU开机,不然咋跑啊!

最终项目也是正常跑起来了:
在这里插入图片描述

### 使用 AutoDLVSCode 中进行开发 为了在 Visual Studio Code (VSCode) 中高效利用 AutoDL 进行机器学习模型训练其他数据科学任务,需遵循特定配置流程[^1]。 #### 安装扩展 安装适用于 Python 的官方 Microsoft 扩展以及其他有助于提高生产力的插件。这一步骤确保了编辑器能够理解并支持所使用的编程语言特性。 #### 配置环境变量 创建 `.env` 文件来定义必要的环境变量,以便连接到远程计算资源或指定本地 GPU/CPU 资源分配情况。对于 AutoDL 平台而言,可能涉及 API 密钥或其他认证凭证设置。 #### 设置工作区文件夹结构 构建合理的工作目录布局,通常包括但不限于 `data`, `models`, `scripts` 子文件夹。这种组织方式有利于管理不同类型的项目资产,并简化路径引用逻辑。 #### 编写脚本调用命令 编写 Python 或 Shell 脚本来执行诸如下载预处理后的数据集、启动训练过程以及评估最终性能指标等操作。针对提到的 ns-viewer 及 ns-render 命令,在适当位置加入这些工具的具体应用实例: ```bash # 渲染视频示例 ns-render camera-path \ --load-config outputs/bear/in2n-small/2023-12-19_173037/config.yml \ --camera-path-filename data/bear/camera_paths/2023-12-17_230904.json \ --output-path renders/bear/2023-12-19_173037.mp4 ``` 上述代码片段展示了如何通过命令行参数传递配置信息给渲染程序。 #### 整合调试功能 启用内置断点机制日志记录选项,使得开发者可以在遇到错误时快速定位问题所在;同时也可以借助第三方库如 TensorBoard 来监控实验进展状况。 #### 自动化部署流水线 考虑采用 CI/CD 工具链实现持续集成与交付自动化,从而减少手动干预频率并提升迭代速度。例如 GitHub Actions, GitLab CI 等服务可以帮助完成从提交变更请求直至推送更新版本整个周期内的各项任务。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值