MATLAB基于PSO(粒子群算法)优化BP神经网络和NSGA-II(非支配排序遗传算法)多目标优化

王者杯·14天创作挑战营·第5期 10w+人浏览 625人参与

代码实现了一个智能算法优化BP神经网络并进行多目标优化的完整流程,结合了PSO(粒子群算法)优化BP神经网络NSGA-II(非支配排序遗传算法)多目标优化,用于多输入多输出的回归预测问题


✅ 一、主要功能

  1. 数据预处理:读取Excel数据,归一化处理,划分训练集和测试集。
  2. PSO优化BP神经网络
    • 使用PSO算法优化BP神经网络的初始权重和偏置。
    • 训练优化后的BP网络并进行预测。
  3. 与传统BP对比:比较PSO-BP和传统BP在测试集上的预测性能。
  4. NSGA-II多目标优化
    • 对多个因变量(输出)进行帕累托前沿搜索。
    • 输出最优解集(自变量和因变量取值)。

✅ 二、代码参数设定

参数名含义默认值/说明
xunlianji训练集样本数ceil(hang*5/6)
ceshiji测试集样本数hang*1/6
hiddennum隐藏层节点数2*inputnum+1
SearchAgents_noPSO粒子数30
Max_iterationPSO最大迭代次数20
npopNSGA-II种群大小100
maxitNSGA-II最大迭代次数20
pc交叉概率0.8
nc交叉个体数round(pc * npop / 2) * 2
mu变异概率0.05
VarMin, VarMax自变量取值范围从归一化参数中自动获取

✅ 三、算法步骤

1. 数据准备与预处理

  • 读取Excel数据,提取自变量和因变量列。
  • 归一化数据到[0,1]区间。
  • 划分训练集和测试集。

2. PSO优化BP神经网络

  • 初始化BP网络结构(隐藏层节点数、激活函数等)。
  • 使用PSO优化BP网络的初始权重和偏置。
  • 训练优化后的BP网络。
  • 进行预测并反归一化。
  • 计算误差指标(MAE, MSE, RMSE, MAPE等)。

3. 与传统BP对比

  • 训练一个未经优化的BP网络。
  • 对比两个模型在测试集上的表现。

4. NSGA-II多目标优化

  • 初始化种群,定义目标函数(多个因变量的误差或性能指标)。
  • 进行非支配排序和拥挤度计算。
  • 执行选择、交叉、变异操作。
  • 输出帕累托最优解集(自变量和因变量取值)。

✅ 四、应用场景

该代码适用于以下场景:

  • 多输入多输出回归预测问题,如:
    • 工业过程优化(多个质量指标预测)
    • 金融风险评估(多个风险指标)
    • 环境监测(多个污染物浓度预测)
    • 能源系统优化(多目标能效分析)
  • 需要同时优化多个目标的场景,如:
    • 最大化某个输出、最小化另一个输出
    • 多目标权衡分析(帕累托前沿)
  • 对神经网络初始权重敏感的问题,PSO可帮助找到更好的初始点。

✅ 五、其他说明

  • 输出结果包括:
    • 预测对比图、误差图、散点图
    • 帕累托前沿图
    • Excel文件保存帕累托解集

完整代码下载:MATLAB基于PSO(粒子群算法)优化BP神经网络和NSGA-II(非支配排序遗传算法)多目标优化

运行效果
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值