单调栈

本文深入解析单调栈的概念,通过LeetCode上的“每日温度”和“柱状图中最大的矩形”两道题目,详细阐述了单调栈的实现原理及其在解决特定类型问题中的应用。文章提供了完整的代码示例,帮助读者理解单调栈如何维护序列的有序性,并在实际问题中寻找最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是单调栈?

这个概念是在leetcode做题时接触的,就是通过栈的push()和pop()操作,维护一个有序的序列(依次出栈的元素)。

如:7 4 3 8 10 9 13

下面则通过leetcode中的题目来说明它如何在问题中使用?

739. 每日温度

题目描述: 请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。

分析:从当前位置出发,后面部分中最近的一个比我大的元素(温度),并计算距离。模拟整个过程:assign表示计算res[i]位置的值(res: 输出的结果)。

push 73
74 > 73 -> assign 73 pop 73 push 74 [74]
75 > 74 -> assign 74 pop 74 push 75 [75]
71 < 75 -> push 71 [75, 71]
69 < 71 -> push 69 [75, 71, 69]
72 > 69 -> assign 69 pop 69 ---> 72 > 71 -> assign 71 pop 71 ----> 72 < 75 -> push 72 [75, 72]
76 > 72 -> assign 72 pop 72 ---> 76 > 75 -> assign 75 pop 75 -> push 76 [76]
73 < 76 end

参考代码:

class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& T) {

        vector<int> res(T.size(), 0);
        stack<int> st;//维护的是下标值

        st.push(0); //第一个位置先进栈
        for(int i = 1; i < T.size(); ++ i){
            //不是if 而是while
            while(!st.empty() && T[i] > T[st.top()]){
                int pre_idx = st.top();
                res[pre_idx] = i - pre_idx;
                st.pop(); //操作完出栈 
            }
            st.push(i);
        }
        res[T.size() - 1] = 0;
        return res;
    }
};

84. 柱状图中最大的矩形

题目描述:给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

 ------------------> 

可结合我模拟的过程和上图,则可计算出面积。

参考代码:我这里确定底边宽的方法不一定好理解,也可以考虑其他的计算方法。

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        
        if(heights.size() == 0) return 0;
        if(heights.size() == 1) return heights[0];
        stack<int> st; //维护一个最小栈, 记录index, 单调栈中的高度应该保持递增

        heights.push_back(0);
        int res = 0;
        for(int i = 0; i < heights.size(); i ++){
            
            while(!st.empty() && heights[i] < heights[st.top()]){
                int tmp = st.top();
                st.pop();
                //i是当前的坐标, i-1可理解其左侧的坐标
                //2 r = 4 - 1 = 3, l = 2 + 1 = 3 -> s = 6 * (3 - 3 + 1)
                int r = i - 1;
                int l = st.empty() ? 0 : st.top() + 1; //可以合并的矩形的右侧坐标
                
                res = max(res, heights[tmp] * (r - l + 1));
            }
            st.push(i);
           
        }

        return res;
    }
};

以上就是这篇的主要内容,如有疑问或问题之处请指出,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值