基于深度学习的热红外图像超分辨率(Infrared Image Super-Resolution)是一种利用深度学习技术提高热红外图像空间分辨率的方法。在超分辨率任务中,模型的目标是从低分辨率输入图像生成高分辨率的图像,以提供更多细节和更清晰的图像。
以下是在热红外图像超分辨率中常见的深度学习方法和关键概念:
- 深度卷积神经网络(CNN):
- 使用深度卷积神经网络是热红外图像超分辨率的常见选择。这些网络可以通过层次化学习,从低级别的特征逐渐提取高级别的特征,以更好地恢复图像的细节。
- 生成对抗网络(GAN):
- GANs 在图像超分辨率中有广泛的应用。通过引入对抗性训练,模型可以生成更真实、更自然的高分辨率图像。GANs 还可以提高模型对真实世界中细节和纹理的学习能力。
- 残差学习: