产品经理这么火,一文讲清楚AI产品经理怎么入门!

一、AI时代,最好的工作应该是产品经理

在AI时代,产品经理可能成为最受欢迎的职业之一。这一趋势不仅反映了技术的快速进步,也凸显了产品经理在连接技术与用户需求中的关键作用。

例如,在电商领域,AI帮助产品经理分析海量用户数据,优化推荐算法,提升购物体验;

在医疗行业,产品经理通过AI技术推动智能诊断系统的落地,为医生和患者提供更高效的工具;

甚至在内容创作领域,AI协助产品经理开发智能写作工具,大幅提高生产力。这些具体事例进一步证明了产品经理在AI时代的重要性。

图片

产品经理在至少下面这三方面是不可替换的角色!

1. 桥梁作用

产品经理在团队中扮演技术与市场、用户与开发之间的桥梁角色。在AI的快速发展中,技术创新往往走在用户需求的前面,产品经理需要理解并翻译技术的可能性,将其转化为对用户有意义的产品。比如,在一个以自然语言处理为核心的聊天机器人项目中,产品经理需要将复杂的技术功能翻译为用户可以轻松理解和使用的交互设计,同时确保开发团队能够高效实现这些功能。

2. 战略视角

AI的应用范围从推荐算法到自动驾驶,产品经理需要具备战略眼光,能识别行业趋势,预见用户需求,定义明确的产品路线图。例如,在自动驾驶领域,产品经理需要综合考虑用户安全、法规遵从以及市场竞争,设计出兼具商业价值与社会意义的产品战略,并带领团队高效落地。

3. 协调资源

AI项目往往涉及多学科交叉,产品经理需要协调数据科学家、工程师、设计师等多个团队,确保项目按计划推进。例如,在开发一款智能音箱时,产品经理需要同时协调硬件团队优化设备性能,软件团队实现智能语音交互功能,以及设计团队创造出符合用户审美的外观设计。只有在各团队高度协作的情况下,产品才能如期推出并获得市场认可。

AI对产品经理的助力也是非常大的,产品经理自己只有善用AI,才会成为一个合格的产品经理,才会成为一个更优秀的产品经理。比如下面这几方面,AI会极大的加持产品经理的能力!

  1. 数据驱动决策 :AI技术让数据收集与分析更加高效,产品经理可以基于数据制定更精准的决策。例如,通过用户行为分析工具,预测功能使用率或优化用户体验。

  2. 智能化工具:许多产品管理任务可以通过AI智能化工具高效完成,如竞品分析、用户反馈分类,甚至生成初步的产品需求文档。这些工具不仅能减少重复劳动,还能通过深度学习算法提供更准确的分析结果。例如,智能化竞品分析工具可以动态跟踪市场变化;用户反馈分类系统则能基于自然语言处理技术自动识别情感倾向;生成产品需求文档的工具甚至可以基于历史数据和市场趋势预测未来需求。这让产品经理能够更专注于战略性决策与创新工作。

  3. 提升创新能力: AI的强大计算能力支持快速原型设计和测试,产品经理可以更高效地验证产品概念,缩短开发周期。同时,AI编程工具的直接参与,可以帮助产品经理将创意快速转化为实际可用的产品功能,从而进一步提升其转化能力与执行效率。

当然了,AI时代,对于所有人,不仅是产品经理都会是一个挑战与机遇

  1. 技术理解要求提升: AI产品经理需要深度理解AI技术,如机器学习、深度学习的基本原理,以及模型的局限性和风险。这对非技术背景的产品经理提出了更高的要求。此外,只有更深入地理解大模型的能力,如其参数调优、推理效率与适用场景,才能真正挖掘其潜力,帮助拓展产品的功能边界。例如,理解Transformer架构的工作原理,可以为开发更精准的推荐系统提供技术支持;熟悉生成式模型如GPT的应用,则能更好地设计交互式用户体验。
  2. 道德与隐私问题 :AI技术涉及隐私保护和算法偏见等敏感问题,产品经理需要在追求商业价值和社会责任之间找到平衡。例如,在隐私保护方面,产品经理需要确保数据处理流程符合GDPR等国际隐私法规,避免因违规而导致的法律风险;在算法偏见问题上,产品经理应推动团队引入公平性测试工具,主动识别并减少算法中的偏见。此外,在实际应用中,面对诸如人脸识别技术可能带来的隐私侵犯争议,产品经理需要与法律和伦理团队紧密合作,制定合理的技术使用规范,以平衡技术优势与用户信任之间的关系。

AI时代对产品经理提出了新的要求,也提供了前所未有的机遇。在技术快速迭代的背景下,那些能够结合技术与用户洞察、同时具备战略思维的产品经理,将成为企业成功的关键驱动力。

二、2024年,现在做全职的AI产品经理,时机还不对

就在最近,Chatgpt又更新了,推出了新版本名字叫做canvas。

这个版本可以支持对AI的对话内容进行编辑了,也就是以前prompt一次性生成的结果总是很难控制输出结果,新版新增了可以在结果内容与用户进行交互的产品入口,最终在一次结果生成中,可以得到用户想要的内容。

有人说这和Claude 的 Artifacts 很像(起码产品思路上比较像),但是简单体验了一下发现还是有一些差别。现chatgpt的的版本,可以看到AI产品已经从底层的大模型能力优化更新,已经进入到了系统功能产品设计方案的区别。

通过这次更新,我认为转型全职AI产品经理的同学,还可以再等等了。

1.AI产品现在不赚钱

而国内的企业都在卷AI模型,但是能够用AI赚钱的几乎没有,市面上叫得出名字的AI大模型产品,几乎都是亏损的。而他们之所以获得资本关注甚至是投资,是因为有月活、新增用户的新增,所以有其关注度。

但不意味着产品的商业模式就闭环了。

现在全职的AI产品经理必然会面临着负责的产品不盈利的情况或者数据难以达标,所以很容易在团队被优化,要么就是考核的工作指标太高。

2.AI的技术栈还不够稳定

现在在美国,马斯克所建立的X.ai也快速成长,由自己亲儿子加入。预计即将在年底会和openAI、谷歌Gemini进行直接PK。

图片

而国内的AI也没有一家固定的底座能力,只有在用户量文心一言、Kimi成为第一外,在AI大模型基础能力上,各个厂家都有自己的优势,每个模型厂商都在卷自己的跑分。

比如C端有KIMI和文心一言,在B端有华为、科大讯飞等大模型。

而AI这个能力的定位势必就像互联网的水和电一样,普及到每个应用,类似IOS与安卓系统一样,不会超出2家。

因为太多家后,市场就不会有那么大,利润不足够企业持续运行,而且开发者也没有那么多精力对接不同的AI模型,也就没有办法打造自己的AI模型生态

所以现在全职AI产品经理,几乎都是API调用并且加入自己业务的知识库进行训练,不会全职去all in 做一个相同业务的全新AI产品。

因为99%的团队不会涉及到AI大模型的产品研发,可是在AI基础能力都不稳定的情况下,自然对应的产品框架设计方案就不稳定。

3.用户对AI的付费意愿不高

现在还处于AI大模型卷的时代,就像当初饿了么、美团外卖、百度外卖等外卖大战的时候,用户点外卖几乎养成了不需要花钱或者有优惠券再点外卖的习惯。

而现在AI现状也是,为了拉新用户,市面上几乎都有可以免费让用户使用的AI产品,比如CHATGPT收费,但可以使用文心一言满足我的需求。

或者一些聚合网站(开发者通过自己部署的AI大模型)也提供了免费AI使用的能力。

主要是利用互联网的拉新策略,用户新增、用户数据为王,让用户对AI付款的意愿非常低,除非类似chatgpt4O那种技术高度,没有其他产品可以替代。用户意愿付费外,其他就没有了。

4.AI产品的5个发展阶段,每个阶段都有一套产品框架

openAI的创始人奥特曼提到,AI的产品发展有5阶段,分别是代替人、组织等。该分级体系详尽地描绘了AI从初级到高级的五个关键阶段:

第一级(Level 1):对话交互者,即具备自然语言对话能力的AI,如现有的聊天机器人。

第二级(Level 2):智慧推理者,能够解决达到人类水平的复杂问题,据称此类AI的能力相当于拥有博士学位但尚未借助专业工具的人类,能执行基础的问题解决任务。

第三级(Level 3):行动执行者,指的是能够自主采取行动的AI系统,标志着从理论推理到实践操作的跨越。

第四级(Level 4):创新辅助者,此阶段的AI不仅限于执行任务,更能辅助人类进行创造性发明,推动科技进步。

第五级(Level 5):组织管理者,达到这一级别的AI将能够全面承担组织内部的工作协调与管理,展现出高度的自主性和策略性。

要达到每个阶段,至少都会孵化出一个AI新的产品框架,提供产品功能,所以这导致使用相同底座的AI产品,在产品框架难以定性,这也是现在all in 做AI产品还是太早了。

5.找垂直场景需求,用功能解决问题的产品设计思路仍然不变

转型AI产品经理,不要为了AI而去刻意做AI产品。

仍然是瞄准有需求的场景,将原本需要用图像识别、音频算法的场景,现在可以通过AI大模型来完成,但没有AI大模型,产品仍然可以跑通流程的。

比如最近有2个项目,就特别有趣,一个是食物饮食识别 ,一个是AR眼镜的人脸识别系统。

食物饮食是识别记录

前者将原有的图像拍照、手动输入的饮食记录,变成了图像识别+AI大模型的输入。用户在系统无需输入,只需要校验,就可以录入每日的饮食摄入卡路里。

大大解决了以往用户记录食物卡路里不准的问题

图片

第二个是基于META 的AR眼镜猎户座为基础

斯坦福2个学生通过开发一个人脸识别系统,可以将其人脸图像,通过图像识别后再到互联网进行搜索的在AR眼镜的全新应用。

通过AI大模型,可以快速得到用户在网上的公开信息,迅速与别人成为好友交流。

图片

2个产品都是可以不需要通过AI大模型实现的。

都可以通过手机的APP完成,因为本质上的底层技术是利用图像识别算法以及物理建模完成,只是有了AI大模型,可以快速的完成以上步骤将其过程更加自动化,大大的提升用户体验。

因此,要想成为AI产品经理,AI技术只是对场景问题的辅助与提升效率,产品经理仍然聚焦在需求上即可。

6.产品经理了解AI不要只是用,要清楚AI大模型的调参本质

转型AI产品经理从0到1,都去走一次AI 大模型部署,不管是用自己的电脑还是公司的显卡,从0到1去下载开源的AI大模型去部署并熟悉使用自建模型。

只有了解大模型的部署流程与具体调参步骤,才能知道怎么将AI能力怎么融入产品设计方案。这类AI大模型部署的工具非常多,比如ollma在国内为主流。

图片

从0到1次,部署到自己的电脑上,即使自己电脑内存不够,大模型运行卡也没事。重要的是走完流程,了解大模型的参数配置与调试。

三、AI产品经理:风口上的新宠

在互联网的浪潮中,AI人工智能领域无疑是最引人注目的风口。AI产品经理,作为这一领域的新兴岗位,以其高薪、低压力、无年龄限制等优势,吸引了众多互联网从业者的目光。随着GPT等AIGC工具的兴起,AI产品经理的市场需求日益增长。

1、AI产品经理需不需要懂算法?

AI产品经理不必像算法工程师那样精通算法,但必须能够与算法工程师有效沟通,了解如何管理AI项目,协调项目资源。

2、成功转行AI产品经理的三大能力:
  1. 产品经理能力:市场调研、需求分析、产品设计、用户体验优化等。

  2. AI基础技术:Python、机器学习、深度学习等。

  3. 主流AIGC产品研究:深入理解市场上的主流AI产品。

3、AI产品经理的学习清单
3.1、AI产品经理全局讲解
  • AI产品架构全景图:从AI产品经理的视角全面了解人工智能。
  • AI产品全岗位分析:岗位分类、热招岗位分析、招聘需求剖析。
  • AI产品经理个人规划:能力模型、学习路径、职业规划。
3.2、Python编程
  • Python基础与进阶功能:从二进制世界到数据类型、基础数学运算。
  • 面向对象编程:函数、递归问题、文件操作、类和对象。
  • 通信与爬虫:网络通信协议、HTTP协议、socket协议、正则表达式。
  • 实战教学:爬虫、网络聊天室、电子表格处理、PDF文件读取、算法代码实操。
3.3、机器学习
  • 机器学习基础:概述、数学统计学基础、模型基础技术名词。
  • 机器学习类型:有监督学习、无监督学习、半监督学习、强化学习。
  • 机器学习流程:数据预处理、特征工程、模型验收。
  • 七大常用算法精讲:K邻近算法、线性回归、逻辑回归等。
  • 机器学习案例:用户推荐系统、价格预测模型、银行风控审查。
3.4、深度学习
  • 神经网络:感知机、多层神经网络、RBF神经网络。
  • 图像识别与卷积神经网络:图像识别、卷积神经网络技术原理、手写数字识别。
  • NLP与循环神经网络:自然语言处理、循环神经网络、生成式大语言模型。
  • AI绘画与生成对抗网络:AI绘画、生成对抗网络、Diffusion模型。
  • 深度学习案例讲解:人脸识别、文本分类、自动驾驶。
3.5、AI产品设计
  • 竞品调研:竞品选择与定位、功能与特性分析、市场定位与用户需求。
  • 需求分析与PRD文档:需求收集、功能需求定义、非功能需求定义、用例描述与场景分析、PRD文档撰写。
  • 模型训练数据准备:数据收集与清洗、标注与处理、增强与变换、数据划分。
  • 模型的构建与验收:模型选择与设计、特征工程、训练与优化、评估与验证。
  • 工程开发及产品上线运营:产品全局验收、发布与部署、监控与维护、优化与迭代。
3.6、AI产品项目管理
  • 敏捷项目管理:敏捷管理理念、Scrum框架、需求分析与拆解、迭代与增量、团队协作与沟通。
  • 瀑布模型管理:需求定义与规划、系统设计与实现、测试与验收、维护与版本管理。
  • 项目进度管理:进度计划与安排、跟踪与控制、延误分析与应对、报告与沟通。
  • 项目管理工具:项目管理软件概览、Teambition与Jira的配置与使用。
3.7、AI产品项目实操
  • “AI奢侈品估价”项目:竞品调研、需求分析、原型图和PRD文档、模型训练数据准备、产品评审。
  • 更多AI案例精讲:个性化推荐系统、用户评论意向书预测、智能客服产品。
3.8、AI产品经理面试求职
  • 岗位定位分析:个人能力与经验剖析、AI产品岗位解析、求职方向定位。

  • 简历修改和辅导:个人简介润色、工作经验修改、增加AI项目经验。

  • 岗位推荐和面试辅导:相关岗位内推、面试技巧、一对一模拟面试。

结语

AI产品经理是一个跨学科、跨领域的综合性岗位,它要求从业者不仅要有扎实的技术基础,还要有敏锐的市场洞察力和卓越的项目管理能力。通过上述学习清单的系统学习,你将能够逐步构建起成为一名优秀AI产品经理所需的知识体系和技能。记住,持续学习和实践是通往成功的关键。祝你在AI产品经理的道路上一帆风顺!

四、月薪 3w 起!AI 产品经理的5点认知

最近接触了三,四篇不错的关于AI产品经理采访报告,干货很多,结合他们说到的点,以及我自己目前在AI 工作中遇到的困难, 整理归纳成这篇文章

目前发文章不频繁, 确实在AI领域知识上有些停滞, 有点瓶颈期的感觉, 也没有太多特别有用的输入,上个月从 zlibrary下载了好几本相应的电子书, 也还没有时间看,这点得反省反省

1、 产品,用户,技术

上一代产品经理解决的是 PMF,即产品和市场/用户的 fit,这一代AI产品经理还要先解决 TPF,即产品和技术的 fit

第一个原因是 AI 技术更新得太快了,一个月一个样,前几月没法解决的问题, 过几月可能就有相应的开源产品出来,很难解决的问题可能就有现成的技术解决

另外一个原因是 AI 产品的概率性,不确定性, 不管是 LLM 还是Stable Diffusion 的图像类模型, 你都无法精确控制他能生成什么, 具体到很多细节的参数都要一次次一代代的反复调节,而这种控制模型生成质量的能力,以及对 AI边界的认知是衡量 AI 产品经理水平的一个很具挑战性的标准

就这一点继续从用户角度展开说, 现在不太了解 AI 的普通用户,其实觉得 AI 能力很强, 导致对 AI 容错率很低,绘画模型把手指没画好, 语言模型乱回答, 就会觉得这个产品不行, 用户还不能理解这种 AI 模型的概率性和不确定性

所以一方面通过优化给用户交付的结果,增加对模型的可控性,另一方面管理用户的预期,比如让用户理解这不是最终结果,而是一个可以继续编辑的草稿,并且基本能满足用户预期, 做不到 100%,也要做到 90%, 不然用户不会愿意去做, 用户也不会留存

如果这是 AI native 产品, 还可能需要做教学使用视频, 做用户推广和教育或者尽量简化用户的上手门槛

有次我跟业务人员对接, 就采用了较复杂的产品方式, 需要用户下载好几个插件,每个插件还需要一些配置, 当时教这个业务人员使用时, 教到一半就被喊暂停, 说太复杂了

后来反思也确实是对这些没怎么接触 ai 来说的使用者, 门槛太高, 他们大多数也不会有那个时间和精力去主动学习,用户其实又懒又很受惯性思维影响的

以前的产品经理之所以依赖工程师,是因为有很多业务逻辑必须通过代码语言去实现

而现在来看,AI 产品的 prompt, temperature和各种AI workflow 产品(绘画AI 都有 comfy UI), 不懂算法和底层代码的产品经理其实都可以上手试的, 修改 config, 拖拉拽修改工作流, 产品经理自己去部署体会这些 AI 产品的具体情况

而对于大多非 AI native 的中小公司来说, 很多工程师水平有限, 是第一次接触 AI, 并不一定比你更懂

AI产品经理需要浸泡在 AI 界中, 了解每个月的 AI 主要进展, 阅读 AI 论文, 知道底层原理和最新AI 思路, 同时要自己多上手部署体验,切实地感受 AI 的利弊

以前的开发方式是产品经理先大致梳理出业务流程和预期结果,再和负责模型、算法的工程师去沟通,但这在 AI 时代是非常不现实的, 原因也是因为上面提到的两点 AI 技术原因

这点我有直接感受, 最开始接触 AI 甚至到现在,老板都想要我梳理个业务流程,技术架构,每个模块的 AI 产品文档, 我去年也实实在在写过, 写完后我的感知是太空太虚了,乍一看是有很多道理的,各个模块也是该有的, 可是要在下一层或者再下一层去细化,就很困难, 顶多写到更下一层的现有参考开源闭源产品和技术, 整个过程感觉都特别扭和生硬

不是每个模块都有现成的可以用的开源技术,并且每个模块下面的产品和技术都在不停地变化, 最重要的没人去实际地落地测试这些, 就想靠我一人,况且这样写出来对实际落地解决问题,没有什么帮助, 可能就是要这个文档去外面讲,到处融资吧, 这就是AI投融资的问题了

上面说的产品梳理流程, 让算法解决, 其实也是目前很多大厂的问题, 模型是一个部门, 产品是一个部门, 技术是一个部门, 这也是为什么很多新报道出来的 AI 创新技术大多是 10–20 个人的 AI 小团队做出来的, 比如最近的法国的Kyutai做的 moshi, 就是8 个 AI 科学家做的

你要理解整个的运作过程,你才能知道这其中哪一部分是可以抽离出来的,哪些部分又有了新的技术可以提升

在这么一个小团队,每个人各有细分领域的擅长,又对彼此领域和整个 AI 产品运作流程有所了解

我个人还是更倾向在适当大的虚的框架指导下, 去实实在在的落地去做去测去探索

目前,我打算先把自己往那 3 点去培养,具体包括

  1. 了解最新产品技术, AI 新闻和潜在的用户痛点和需求
  2. 坚持读 paper , 了解技术原理
  3. 自己多动手部署测试开源项目,根据用户痛点,用目标场景下的数据重新引导这个模型,不管是通过 fine-tuning 还是 LoRA,还是做模型的裁剪、蒸馏,甚至是一些 agents

顶级产品经理: 能看到整个技术在未来的发展和改变

其实整体大家对 AI 的认知很浅, 更多是情感的兴奋, 真正耐下心仔细研究关注 ai 在学术和工业界进展的人实际很少

AI产品的能力也很浅, 技术初步开发, 真正有效解决复杂场景用户痛点的产品, 还需要技术和产品的不断迭代, 同时用户的需求也在不断加深, 以前 AI 能根据提示词对话就行, 现在要 AI 能实时对话,并且图像能动

2、招聘

紧接着就说招聘, 目前招聘市场的4点基本情况

  1. 公司司招聘 AI产品经理的 JD 工作描述写得模糊, 求职者自己的简历也定位不清晰
  2. 以前卖课的教人从其他岗位转成产品经理, 现在是教产品经理转成 AI 产品经理, 这些卖课的只负责流量收割和卖课, 简单教教怎么用 chatGPT 和一些上手项目
  3. AI产品经理分类包括AI数据处理的产品经理, 大模型策略的产品经理,AI native 的产品经理, 把传统产品中加 AI 功能的产品经理; 图像领域的产品经理等等
  4. AI 产品经理招聘市场招了大半年也招不到人, 把所有没有解决的问题都塞到一起当成一个岗位去招聘

这第 4 点展开说:

既要求懂技术原理,又会产品, 也知道用户需求和痛点,能根据需求评估技术路径和实现成本并且是, 这对于个人来说很有挑战性,能满足这些人的能力本来就很少,再有,具备这些多面手的能力,自己完全可以自己去创业, 没必要到别人公司去打工

具体面试AI 产品经理对其要求:

简历: 基本产品经理素质+ AI 工作关联的部分,包括更深的接触 AI 工作流, 自己能经常用到的 AI工作流,甚至参与过自己有用户痛点想法的AI项目

面试: 被面试者对 AI 及AI 的应用场景有自己的认识和理解, 哪些 AI 产品试过并讲解看法,尤其是一些对用户场景和目前AI 技术边界的清晰认识,甚至已有相应工作经验,能很快上手

五、传统产品经理:智能化产品经理转型之路

(原创 超级英雄吉姆 超级英雄吉姆)

在快速变化的科技环境中,智能化学习产品成为教育行业的重要趋势。传统的产品经理如何顺应潮流,成功转型为智能化产品经理?本文将详细探讨这一过程,提供全面的学习路径和具体的转型步骤。

1、背景与趋势分析
1.1 技术驱动的教育变革

随着人工智能、大数据和云计算等技术的快速发展,教育行业正经历深刻的变革。智能化学习产品通过个性化推荐、实时反馈和数据驱动的教学设计,显著提升了学习效果和用户体验。

1.2市场需求的变化

图片

现代学习者越来越依赖数字化学习工具,希望能够随时随地获取高质量的学习资源。这对产品经理提出了新的要求,必须具备设计和管理智能化学习产品的能力。

2、转型路径详解

图片

传统产品经理在转型为智能化产品经理的过程中,需要从以下几个方面入手:

1. 深入学习新技术
1.1 人工智能和机器学习

人工智能(AI)和机器学习(ML)是智能化学习产品的核心技术。产品经理需要理解这些技术的基本原理和应用场景,以便在产品设计中有效利用它们。

学习步骤:

  • 基础知识: 通过在线课程学习人工智能和机器学习的基础知识。
  • 进阶学习: 深入研究具体算法和模型,如神经网络、决策树、支持向量机等。
  • 实战练习: 参与开源项目或公司内部项目,实践所学知识。
1.2 大数据与数据分析

大数据技术在智能化学习产品中起到至关重要的作用,特别是在用户行为分析和个性化推荐方面。

学习步骤:

  • 数据分析工具: 学习使用Python、R等编程语言及其数据分析库(如Pandas、NumPy)。
  • 大数据平台: 掌握Hadoop、Spark等大数据处理平台的使用。
  • 数据可视化: 学习数据可视化工具(如Tableau、Power BI),提升数据呈现和分析能力。
2、 转变思维方式

智能化产品经理需要具备数据驱动和用户需求预判的能力。通过数据分析,预见用户需求,优化产品设计。

2.1 数据驱动的决策

学习步骤:

  • 数据采集和处理: 学习数据采集、清洗和处理的方法,确保数据的质量和可用性。
  • 数据分析与应用: 学习数据分析技术,能够从大量数据中提取有价值的信息,指导产品设计和优化。
2.2 用户需求预判

学习步骤:

  • 用户调研与反馈: 深入了解用户需求,通过调研和反馈机制收集用户意见。
  • 市场趋势分析: 关注行业动态和市场趋势,预判未来的用户需求和技术发展方向。
3. 掌握敏捷开发与项目管理

智能化产品的快速迭代要求产品经理具备敏捷开发和高效项目管理的能力。

3.1 敏捷开发方法

学习步骤:

  • 敏捷方法论: 学习Scrum、Kanban等敏捷开发方法,理解其核心理念和实践方法。
  • 敏捷工具: 掌握JIRA、Trello等敏捷项目管理工具的使用。
3.2 高效项目管理

学习步骤:

  • 项目计划与执行: 学习项目计划、资源分配和进度管理等基本项目管理技能。
  • 风险管理与质量控制: 学习风险识别与控制方法,确保项目按时高质量交付。
4. 提升沟通与协作能力

智能化产品开发涉及多部门协作,产品经理需要具备优秀的沟通和协作能力。

4.1 跨部门沟通

学习步骤:

  • 沟通技巧: 学习高效沟通技巧,掌握跨部门沟通和协调的方法。
  • 团队建设: 提升团队管理能力,建立高效的团队协作机制。
4.2 冲突解决

学习步骤:

  • 冲突管理: 学习冲突管理方法,提升解决问题和应对挑战的能力。
  • 问题解决: 通过实际案例分析,学习有效的冲突解决策略和方法。

三、学习路径与资源推荐

1、 理论学习

理论学习是转型的基础,通过系统的理论学习,产品经理可以掌握智能化产品设计的基本概念和方法。

学习要点:
  • 人工智能和机器学习: 理解AI和ML的基本概念、算法和应用场景。
  • 大数据与数据分析: 掌握数据采集、处理、分析和可视化的方法。
  • 敏捷开发与项目管理: 学习敏捷开发的核心理念和实践方法,掌握高效项目管理的技能。

2. 实践应用

理论学习只是第一步,更重要的是将理论应用于实践,通过实际项目提升自己的实战能力。

学习要点:
  • 参与项目: 通过参与公司内部项目或开源项目,将所学知识应用于实际,提升自己的实战能力。
  • 项目复盘: 在项目结束后,进行复盘和总结,分析项目中的得失,积累经验。

3. 持续学习与进化

智能化技术和市场需求不断变化,产品经理需要持续学习和进化,保持对最新技术和市场动态的敏感性。

学习要点:
  • 关注行业动态: 通过阅读专业书籍、文章和报告,保持对行业最新动态的了解。
  • 参加研讨会和交流活动: 通过参加行业研讨会和交流活动,与同行交流经验,获取更多的学习资源和启发。
  • 建立学习网络: 加入专业社区,与同行建立联系,分享学习资源和经验。

四、学习要点与注意事项

1. 理论与实践结合

理论学习和实践相结合,才能真正掌握新技能。不要只停留在理论学习,要积极参与项目实践,提升实战能力。

2. 持续学习和进化

智能化技术和市场需求不断变化,产品经理需要持续学习和进化,保持对最新技术和市场动态的敏感性。

3. 建立学习网络

加入专业社区,参加行业研讨会,建立自己的学习网络。通过与同行交流,获取更多的学习资源和经验分享。

五、学习的重要性

从传统产品经理转型为智能化产品经理不仅是个人职业发展的需要,更是市场和行业发展的必然趋势。通过系统的学习和实践,产品经理可以掌握智能化产品设计的核心能力,在激烈的市场竞争中脱颖而出,为企业和用户创造更大的价值。

希望这篇文章能为您提供有价值的指导和启发,助您在智能化学习产品设计的道路上走得更远更稳。

如何成为 AI 时代的高效学习者?——AI 产品经理视角的大模型学习指南

一、AI 时代的竞争本质:效率跃迁中的个人机遇

从产业迭代规律看,AI 驱动的生产效率革命正遵循 “新岗位效率 > 被替代岗位效率” 的底层逻辑,推动社会整体效能提升。但对个体而言,这意味着 “AI 工具掌握速度决定职业竞争力梯度”—— 这一规律与计算机普及期、互联网爆发期、移动互联网红利期完全一致:早半步掌握核心工具的人,将获得指数级的职业发展加速度

二、一线从业者的十年经验沉淀

作为在头部互联网企业深耕十余年的 AI 产品负责人,我在带领团队落地多个大模型项目的过程中,发现 90% 的从业者面临三大核心困境:

  • 知识体系碎片化:海量资料缺乏科学分层,难以构建结构化认知
  • 实践场景断层:理论学习与产业需求脱节,缺乏可复用的落地方法论
  • 资源获取壁垒:优质学习资源分散在专业社区,非技术背景者难以触达

基于这些洞察,我们系统整理了一套专为 AI 产品经理 / 从业者设计的学习体系,旨在解决 “学什么、怎么学、如何用” 的全链路问题。

三、全维度学习资源矩阵(限时免费开放)

以下资源已通过 CSDN 官方认证,扫码即可领取(无任何附加条件):

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

(一)认知基建层:建立行业全景思维

  • 《大模型技术演进路线图》思维导图(高清可编辑版)
    ▶ 涵盖预训练模型架构 / 多模态技术 / 提示工程等 12 大核心模块
    ▶ 标注产业应用热点(智能客服 / 内容生成 / 代码辅助等 8 大场景)
  • 《AI 产品经理知识图谱》手册
    ▶ 拆解需求分析 - 模型选型 - 项目落地全流程工具链
    ▶ 附 30 + 经典案例的产品设计文档模板

(二)能力提升层:构建实战技能体系

  • 系统课程包(120 课时全流程录播)
    ▶ 模块 1:大模型基础(Transformer 原理 / 训练框架解析)
    ▶ 模块 2:产品设计实战(Prompt 优化策略 / API 调用设计)
    ▶ 模块 3:行业应用精讲(金融 / 零售 / 医疗领域解决方案)
  • 开源项目实训库
    ▶ 含智能问答系统 / 个性化推荐引擎等 5 个完整项目代码
    ▶ 配套《从 0 到 1 落地指南》(含需求文档 / 技术选型报告)

(三)持续进化层:加入产业交流生态

  • 每周技术闭门会(线上直播):一线大厂 PM 分享最新落地案例
  • 专属社群资源:每日更新行业报告 / 岗位内推 / 技术答疑
  • 认证学习路径:完成课程可获得 CSDN 颁发的《AI 产品经理能力认证》

四、立即行动:抢占 AI 时代的 “认知时差”

扫码领取资源后,建议按以下路径开启学习:
第 1 周:完成思维导图精读 +《深入浅出大模型》书籍重点章节
第 2-4 周:跟随课程完成智能客服系统的全流程实战
第 1 个月起:参与行业案例拆解,尝试用大模型优化现有工作流程

这个时代从不辜负 “工具敏感型” 学习者 —— 当多数人还在观望时,早一步掌握 AI 生产力工具的人,已经在重构职业发展的底层逻辑。点击下方二维码,立即领取你的 AI 时代入场券

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值